2D GSP-based DOA Estimation for Arbitrary Array
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Abstract—Existing direction-of-arrival (DOA) estimation
methods based on graph signal processing (GSP) are only
applicable for one-dimensional estimation scenario using linear
arrays. In this paper, an efficient GSP-based DOA estimation
method is proposed applicable for arbitrary array to estimate
elevation and azimuth. By constructing cyclic and weighted
graphs for given 3D array manifold, the received signal is
expressed in graph spectral domain by graph Fourier transform
(GFT). Then, by exploiting the graph spectrum, an effective cost
function is adopted to construct the graph spatial spectrum, in
which a peak search process is performed to obtain the estimated
DOA. The simulation results demonstrate that the proposed
method achieves computational efficiency under arbitrary array.

Index Terms—2D DOA estimation, arbitrary array, graph
signal processing, graph Fourier transform.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation constitutes a funda-
mental task in numerous sensing and communication systems,
including radar systems for autonomous vehicle navigation,
underwater sonar arrays for marine exploration, and mas-
sive Multipe-Input Multiple-Output (MIMO) antenna con-
figurations in next-generation wireless communications [1]-
[5]. Conventional digital signal processing (DSP) based DOA
estimation methods usually exploit the regular arrays, such as
uniform linear array (ULA) and coprime array (CA). Recent
works have advanced sparse array-based DOA estimation
through techniques like correlation reconstruction and virtual
array interpolation [6]-[8]. However, in practical scenarios,
irregular array configurations are often unavoidable, which
motivates the need for more flexible approaches that can han-
dle arbitrary array geometries. As an extension of conventional
DSP, graph signal processing (GSP) provides an emerging tool
to deal with DOA estimation under irregular arrays [9]. By
representing sensor arrays with a weighted graph, the array
observation can be processed using the graph analysis tools,
such as graph Fourier transform (GFT), enabling more flexible
manner in array expression and DOA estimation [10]-[12].

In recent years, DOA estimation based on GSP has been
studied preliminary. Specifically, [13], [14] used a joint space-
time graph to represent the multi-snapshots signal received
by a ULA using Kronecker product. By extending traditional
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beamforming to the graph domain, [15] proposed a single-
snapshot DOA estimation method and further investigated the
influence of graph structure selection on estimation accuracy.
In [16], a GSP-based DOA estimation method for coprime
array is explored, achieving superior accuracy to beamforming
and MUSIC under low signal-to-noise ratio (SNR) conditions.
In our previous work [17], a directional cyclic graph repre-
sentation of ULA was formulated by defining edge weights as
sensors’ phase shift, and an efficient cost function was adopted
to construct graph spatial spectrum. This method achieved
high computational efficiency. However, to the best of our
knowledge, existing GSP-based DOA estimation methods are
still limited to one-dimensional DOA estimation using a linear
array.

In this paper, we propose a two-dimensional DOA es-
timation framework that integrates graph spectral analysis
with graph spatial spectrum construction, which is applicable
for arbitrary array configurations. By constructing a directed
weighted graph based on the spatial adjacency relationships
of array elements, GFT basis are derived from the graph’s
adjacency matrix and the array observation is transformed
into the graph spectral domain. Basing on the analysis of
the characteristic of the graph spectrum, an efficient cost
function is adopted to construct the graph spatial spectrum.
The estimated DOA is obtained by performing spectral peak
search in the graph spatial spectrum. Simulation experiments
demonstrate that our method achieves high computational effi-
ciency while maintaining comparable resolution performance
with conventional method like MUSIC at low SNRs.

II. SIGNAL MODEL

Consider a 3D arbitrary array with M sensors, which are
randomly located in a given range (see an example in Fig.
1). Specifically, the location of the m-th sensor is p,, =
[Pmas Pmy; Pm=) T in the Cartesian coordinate. Here, [-]T de-
notes the transpose. Assume that a narrowband signal impinges
on the array from direction (6, ), where 6 € [0°,90°] and
¢ € (—180°,180°] denote the elevation and azimuth of the
signal, respectively. In Cartesian coordinate, the DOA (6, ¢)
is expressed as

a= [az,ay,az]T (D

= [sin @ cos p, sin #sin @, cos O] . 2)
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Fig. 1.

An example of the 3D arbitrary array. The blue point denotes the
sensors, and the number close to the sensor denotes the index of the sensor.

Thus, the array observation data can be expressed as
x(t) = as(t) +n(t), 3)

where x(t) = [z1(t),z2(t), -,z (t)]T contains the obser-
vation of M sensors, n(t) consists of the noise, s(t) is the
source waveform, and

a — [1’ ejoﬂ(Pz*Pl)Ta‘7 ce aejo”(pM*pﬂTa}T 4)
is the steering vector. Here, j denotes the imaginary unit, and
A is the wavelength.

ITI. PROPOSED ALGORITHM

Different from the conventional array signal expression
in DOA estimation, in GSP, each sensor is treated as a
directed weighted graph vertex, while the weights on the edges
connecting different sensors denote the phase difference (see
an example in Fig. 2).

By formulating the graph for the array configuration, the
adjacency matrix for a specific direction grid (6, @) can be
expressed as

W = {OM—l (5)

ejz%(PM*pl)Té
~ |diag(o) ’

T
OM—l

where & = [sin 0 cos @, sin f sin , cos ] denotes the Cartesian
expression of the direction grid,

2 Tx .o T
o= [ea%(m—pl) A .. X Pu—pu) a}7 ©

and diag(o) denotes a diagonal matrix. After obtaining the
adjacency matrix, we can adopt GFT to convert the array
observation x into the graph spectral domain as

Xp = V_lx, @)

where V~! is the GFT matrix obtained from eigen-
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Fig. 2. A cyclic graph representation of an array where the edge connections
can be constructed independently of any predefined sequential order.
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Fig. 3. Graph spectrum of array in Fig. 1 without noise for different cases.
(a) Grid (0 = 45°,% = —120°) matches the true DOA. (b) Grid (6 =
60°, » = 30°) does not match the true DOA.

decomposition of the adjacency matrix, i.e.,
W =VAV " ®)

Here, A is a diagonal matrix composed of eigenvalues.

The resulting graph spectrum x y depends on the relationship
between the grid (9~, ) and direction of the target. Specially,
consider a target in the direction (8 = 45°,¢p = —120°)
in space under noise-free conditions. When performing GFT
using the matrix V! corresponding to the matched grid
(0 = 45°, % = —120°), the resulting graph spectrum shown
in Fig. 3(a) exhibits an obvious peak. In contrast, when
employing a incorrect grid point (§ = 60°,% = 30°), the
peak becomes submerged in the background components as
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Fig. 4. Three array structures for simulation.

demonstrated in Fig. 3(b). Actually, it can be observed that
W always has the unit eigenvalue. When the grid matches
the true DOA, we have

as(t)

such that the graph frequency spectrum will concentrate on
the component corresponding to unit eigenvalue. Otherwise,
when the grid does not match the true DOA, the resulting
graph spectral does not concentrate on the component of unit
eigenvalue.

Therefore, we can define a cost function

F0 ZM)

= Was(t), 9)

(10)

where v(é, @) is the eigenvector of W corresponding to
the unit eigenvalue, []" denotes the conjugate transpose,
and x(n) is the array observation of the n-th snapshot. Let
Dg = {(61,¢1), (02, p2),- -+, (On,,Pn,)} be the dictionary
of the grids of interest, where the number N, is commonly
much larger than the number of sensors M. The graph spatial
spectrum, composed of the f ( @) of each grid in Dy, serves
as the foundation for DOA estimation. The final estimate
(0,¢) is then determined by identifying the dominant peak
within this spectrum through a search process, i.e.,

(0, %) = argmax f(0, 3). (11)

(e,iﬁ)EDg
Obviously, once the eigenvectors v for each grid are ob-
tained, the proposed algorithm only requires vector product
computations when constructing the graph spatial spectrum,
thereby achieving high computational efficiency.

IV. SIMULATION RESULTS

In this section, we evaluate the proposed GSP-based DOA
estimation algorithm. We randomly generated three array
structures, illuminated in Fig. 4, and conduct Monte Carlo tri-
als on these arrays under varying SNRs and snapshot numbers

TABLE I
AVERAGE RUNTIME OF THE TWO ALGORITHMS ACROSS DIFFERENT
SNAPSHOT NUMBERS, AVERAGED OVER 3000 MONTE CARLO TESTS
(1000 TESTS PER ARRAY STRUCTURE)

Number of Snapshots Proposed Method (ms) MUSIC (ms)
16 17.80 297.9
32 34.10 298.3

to evaluate the performance of the algorithms. In the following
simulations, the number of array elements is M = 16, the true
DOA is § = 45° and ¢ = —120°, the dictionary of grids is
generated with a step size of 0.5° for both the azimuth and
the elevation, and the source waveform is generated randomly
following the standard normal distribution. The root mean
square error (RMSE)

L
i ) ((él —01)* + (&1 — <Pz)2)7
=1

and average runtime are selected as the metrics in our simu-
lation. Here, £ = 1000 is the number of Monte Carlo trials,
0; and ¢, are the angles in the [-th Monte Carlo trial, él and
¢ are their estimates.

Fig. 5(a) illustrates the RMSE performance versus SNR
with N = 32 snapshots across three array configurations. It
is observed that for all array configurations, as SNR increases
from -12.5 dB to 2.5 dB, the RMSE of direction estimates
monotonically decreases for all cases. Notably, the proposed
algorithm shows better performance than MUSIC algorithm
in low SNR situation. As the SNR increases, the proposed
algorithm still has the comparable performance to MUSIC.

As shown in Fig. 5(b), the proposed algorithm outperforms
MUSIC when the number of snapshots is small, indicating the
advantage of the proposed method in the limited snapshots
scenarios.

Next, we evaluate the computational complexity of the two
algorithms with different snapshots. As shown in Table I, the

RMSE = (12)
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Fig. 5. RMSE of the proposed method and MUSIC. (a) RMSE versus SNR for N = 32. (b) RMSE versus snapshots for SNR = —10 dB.
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Fig. 6. Average runtime of the two algorithms versus the number of snapshots.

proposed algorithm is about 16 times faster than MUSIC with
16 snapshots, while maintaining accuracy comparable to that
of MUSIC. Meanwhile, Fig. 6 illustrates that the runtime of
the proposed method increases gradually with the number of
snapshots yet remains significantly lower than that of MUSIC,
demonstrating its computational efficiency. Furthermore, the
transformation basis used in the proposed algorithm depends
solely on the array structure and can be precomputed and
stored offline, while MUSIC requires the generation of the
noise subspace based on the array observation, necessitating
online computation.

V. CONCLUSIONS

In this paper, we propose a fast GSP-based DOA estimation
method applicable for arbitrary array structures in space.
By modeling the array as cyclic and weighted graphs, we
obtain the GFT basis via eigendecomposition of the adjacency
matrices and transform the received signal into the graph
spectral domain through GFT. Leveraging characteristics of the
graph spectrum, we formulate a cost function to construct the
graph spatial spectrum, from which DOA is estimated through
peak search. Simulation results demonstrate that the proposed
algorithm significantly outperforms MUSIC in computational
efficiency while achieving comparable accuracy under low
SNR conditions. In future work, we will further investigate
the GSP-based DOA estimation methods in more complex
scenarios.
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