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Abstract—This paper presents a new framework for the recog-
nition of envisioned speech from electroencephalogram (EEG)
signal. The proposed framework consists of preprocessing for
dividing the signals into blocks, spectral graph wavelet transform
(SGWT), feature smoothing using the moving average filter,
and classifiers (extra trees (ET), random forest (RF), and k-
nearest neighbors (KNN)) for identifying three tasks such as
digits, characters, and objects. The performance of the proposed
method is evaluated on a publicly available database which
consists of three classification tasks namely, digits, characters,
and objects tasks. The SGWT-based method with ET classifier
had the highest accuracies of 92.4%, 92.7%, and 92.3% for digits,
character, and objects tasks, respectively that outperforms other
SGWT-based methods using the RF and KNN. Evaluation results
show that the class-wise accuracies are better than the state-
of-the-art methodologies. The proposed EEG-based framework
for recognition of envisioned speech can enable seamless brain-
computer interfaces (BCIs) for communication of people having
speech impairments and can control the devices using envisioned
speech in human-machine interaction (HCI) applications.

Index Terms—Electroencephalogram (EEG) signals, envisioned
speech recognition, spectral graph wavelet transform (SGWT),
moving average SGWT (MASGWT), signal processing, machine
learning.

I. INTRODUCTION

In today’s world, there has been an exponential growth of
electronic devices that are present everywhere [1]. Because of
this, an intuitive interaction between humans and technology
is needed [2]. This need has stimulated developments in
human-computer interfaces (HCIs), notably through speech
and gesture recognition technologies, which leverage signal
processing and machine learning (ML) methods for real-
time interpretation [3]. Despite of these advancements in
HCIs, there are various challenges [4]. People with speech
impairments, conditions like locked-in syndrome, or situations
demanding high levels of privacy often find these interaction
methods insufficient [4]. This highlights the need to investigate
alternative strategies which utilize signal processing and ML
techniques to address these limitations effectively. Electroen-
cephalogram (EEG) signals are very useful for recognition of
envisioned speech [5].
Previously, various researchers have proposed methodologies
for the envisioned speech recognition by using several signal
processing techniques and ML algorithms on EEG signals.

Tripathi [6] has recognized the envisioned speech using the
EEG rhythms (δ, θ, α, β, and γ rhythms) derived from
low-pass, high-pass, and band-pass filters. The authors in
[7] have proposed multivariate dynamic mode decomposition
for recognition of imagined speech by using multichannel
EEG signals. The researchers in [8] have proposed multivari-
ate swarm sparse decomposition-based joint time-frequency
analysis for the recognition of imagined speech by using
EEG signals. Naik et al. [9] proposed a methodology based
on convolutional neural network (CNN), gated recurrent unit
(GRU), and generative adversarial network (GAN) for perceiv-
ing the human imagination. Mishra and Bhavsar [10] proposed
Siamese models (both online and offline) and CNN-based
approach for the recognition of envisioned speech.
This paper introduces a novel framework for the recognition
of imagined speech using spectral graph wavelet transform
(SGWT). The Fig. 1 represents the block diagram of the
proposed framework. Initially, the EEG signals are prepro-
cessed and segmented. Further, SGWT is applied on the
EEG signals to obtain SGWT features. The obtained SGWT
features are smoothened using a moving average filter to obtain
moving average SGWT (MASGWT) features. The obtained
MASGWT features are given as input to various ML classifiers
namely, extra trees (ET), random forest (RF), and k-nearest
neighbours (KNN) in order to recognize the envisioned speech.
The proposed methodology performs better than the pre-
existing state-of-the-art methodologies.
The rest of this paper is organized as follows. Section II
contains the description of the publicly available dataset used
for our proposed methodology. Section III contains the in-
formation regarding the proposed methodology. Section IV
describes the results obtained and their discussion. The Section
V provides the conclusion of the studied framework for
recognition of the envisioned speech.

II. DATABASE DESCRIPTION

A publicly available envisioned speech database that contains
EEG signals from 23 participants (15 − 40 years old) has
been considered for the proposed methodology [11]. The EEG
signals were recorded with 14 channels namely, AF3, AF4,
F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1, and O2
[11]. The representation of the electrode placement has been
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Fig. 1: Block diagram of the proposed framework for the classification of characters, digits, and objects task.
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Fig. 2: Representation of the electrode placement.

shown in the Fig. 2. The signals are downsampled from a
sampling rate of 2048 Hz to 128 Hz by a factor of 16. The
participants were shown characters (A, C, F, H, J, M, P, S, T,
and Y), digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9), and objects
(Apple, Car, Dog, Gold, Mobile, Rose, Scooter, Tiger, Wallet,
and Watch) on the screen. They were told to imagine the
viewed stimuli for 10 seconds while keeping their eyes closed
and in a resting state. Every two stimulus were separated by
20 seconds to allow the participant to regain his/her resting
condition before considering the subsequent stimuli. During
this process, the EEG signals of the subjected were recorded
from Emotiv EPOC+ sensor [12]. The plots of the EEG signals
corresponding to characters task, digits task, and objects task
are represented in the Fig. 3.

III. PROPOSED METHODOLOGY

A. Preprocessing

The publicly available database used for the proposed frame-
work contains EEG signals recorded for duration of 10 seconds
for each class. Further, the EEG signals are segmented into 32
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Fig. 3: Plots of EEG signals of (a) characters task, (b) digits
task, and (c) objects task from the electrode AF3.

samples with a sliding increment of 8 samples [13]. Out of
the 14 electrodes, 8 electrodes correspond to the frontal region,
2 electrodes correspond to the temporal region, 2 electrodes
correspond to the parietal region, and 2 electrodes correspond
to the occipital region. The inter-subject analysis has been
performed for the proposed methodology.

B. SGWT

SGWT is an advanced signal processing method that is used
to analyze the data that reside on the vertices of a graph
[14]. This method is used to extend the concepts of wavelet
transforms in the Euclidean domain to the domain of graphs
[15]. It is formulated by using the Laplacian matrix Υ which
is derived from graph-based signals. The edges represent the
relationships between any given nodes in the graph. These
relationships are encoded in the adjacency matrix. The nodes
are the samples of the EEG signals in our work. The edges
connect node pairs with weights defined by the adjacency
matrix, W (i, j) = e(x(i)−x(j))

2

, which is calculated separately
for each electrode. The Laplacian matrix is computed by Υ =
D −W , where D represents the diagonal matrix where each
entry is the sum of the corresponding row in W . This is further
used for SGWT feature extraction. A spectral graph wavelet at
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Fig. 4: Representation of SGWT feature and MASGWT fea-
ture of the EEG signal.

a specific scale ξ and localized at vertex ϑ can be expressed in
vector form as, φξ,ϑ(χ) =

∑N−1
κ=0 µ(ξ ·Λκ)Φκ(ϑ)Φκ(χ) [14].

Here, Λκ denotes the eigenvalues of Υ and Φκ corresponds
to the eigenvectors of Υ. The kernel µ is a band-pass filter
which can be defined as follows [14], [15]:

µ =


η, η < 1,

ϖ(η), 1 ≤ η ≤ 2,
2
η
, η > 2,

(1)

where ϖ(η) is a cubic spline that adapts to the curve of µ.
The SGWT coefficients of the signal Ψ are determined by cal-
culating the inner product between the signal and the wavelet,
i.e., ⟨φξ,ϑ,Ψ⟩. An approximate SGWT is implemented by
the help of the SGWT toolbox of MATLAB to reduce the
computational complexity which has been described in the
Appendix. From the EEG signals, the SGWT of each channel
out of the 14 channels is combined to form a feature matrix.
The Laplacian is computed from the feature matrix. The
SGWT of the graph signal is calculated by using the Laplacian
in the SGWT toolbox of MATLAB. The smoothening of the
obtained features is essential as rapid fluctuations in the value
of the features should be handled properly. The smoothing
of the features using the moving average filter is found to
perform better [16], [17]. The plots of the SGWT feature and
MASGWT feature have been shown in the Fig. 4.

C. Classification

The obtained smoothened features are preprocessed using a
median imputation to handle the missing values and also are
scaled using standard normalization. By using label encoder,
the labels are encoded into numerical form. The feature matrix
is splitted into training (80%) and testing (20%) sets [18],
[19]. For the proposed methodology, three well-studied ML
classifiers namely, ET [20], RF [21], and KNN [22] have
been considered. All the classifiers are trained using default
hyperparameters. The random state and number of estimators
considered for ET and RF classifiers are 42 and 100, respec-
tively. The number of neighbors and metric used for KNN are
5 and Minkowski, respectively. The classifiers are evaluated on
the testing set by using the performance metric accuracy which
is mathematically represented as, Accuracy = ϕ++ψ−

ϕ++ψ−+ξ++ζ−
[23]. Here, ϕ+, ψ−, ξ+, and ζ− represent the true positives,
true negatives, false positives, and false negatives, respectively.
The confusion matrix and the receiver operating characteristics

(ROC) are useful tools for the performance assessment, where
the area under the ROC curve (AUC) provides a measure of the
model’s ability to correctly distinguish between classes [24],
[25]. The Fig. 5 represents the confusion matrices and ROC
plots for the character, digit, and images tasks by using ET.
The values (mean±standard daviation) of sensitivity (SN) &
specificity (SP) for the characters task, digits task, and objects
task are 0.929 ± 0.003 & 0.992 ± 0.000, 0.927 ± 0.002 &
0.992±0.000, and 0.927±0.003 & 0.992±0.000, respectively
on performing 30 iterations by using the ET classifier.

IV. RESULTS AND DISCUSSION

This section provides the results obtained at various steps of
the proposed methodology along with their discussions. The
proposed methodology presents a novel framework for the
envisioned speech recognition using the SGWT and ML-based
classifiers. The SGWT is computed on single-channel EEG
signals of the database. Further, the SGWT-based features are
smoothened and appended to form the final feature matrix.
The size of the feature matrix for all the brain regions is
(35880×448), where 35880 represents the total samples of the
MASGWT-based features obtained by the overlapping EEG
epochs and 448 is the multiplication of the EEG epoch (32)
and number of channels (14). For different brain regions,
different channels are considered. Out of the 14 electrodes,
8 electrodes correspond to the frontal region, 2 electrodes
correspond to the temporal region, 2 electrodes correspond to
the parietal region, and 2 electrodes correspond to the occipital
region. This has also been shown in Fig. 2. The analysis
of the proposed methodology has been shown in the Table
I. The experiments were conducted on a MacBook M2 Air
with an Apple M2 processor and 8 GB of RAM. MATLAB
2024b and Google Colab were utilized as the primary software
platforms for this research work. The comparison of the
performance metric accuracy of our proposed methodology
with the pre-existing methodologies proposed by researchers
has been shown in the Table II. It can be clearly seen from
the Table II, a better accuracy is obtained by the proposed
methodology compared to the previous studied for envisioned
speech recognition. The results show that the frontal region
and temporal region of the brain contribute significantly to
the classification tasks. The occipital region and parietal
region contribute comparatively less. Among the ML-based
classifiers, ET consistently outperforms RF and KNN, which
makes it the most suitable ML-based classifier for the proposed
methodology. The runtime needed for the characters task,
digits task, and objects task is 22.830 seconds, 22.243 seconds,
and 22.899 seconds for the ET classifier.

V. CONCLUSION

This paper presented the recognition of envisioned speech
using the EEG signal based on four stages, including the
preprocessing, SGWT, feature smoothing, and classification.
In this work, we study performance of three classifiers such
as ET, RF, and KNN. Evaluation results showed that the
proposed methodology with ET classifier outperforms of the
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Fig. 5: Representation of (a)-(c) confusion matrices and (d)-(f) ROC curves for characters, digits, and images tasks, respectively
by using ET.

TABLE I: Values of accuracy (in %) obtained for digits, characters, and objects tasks at different brain regions by using several
ML-based classifiers

Task ML-based classifier Frontal region Temporal region Parietal region Occipital region All regions

Digits task
ET 87.2 72.1 63.0 41.5 92.4
RF 79.1 60.4 56.3 38.6 82.9

KNN 46.6 31.0 24.0 19.6 63.0

Characters task
ET 86.5 73.7 61.6 41.4 92.7
RF 75.4 61.7 55.4 37.7 82.7

KNN 48.3 30.9 24.9 19.9 57.9

Objects task
ET 86.6 73.5 61.6 39.0 92.3
RF 76.7 63.2 53.7 36.2 82.6

KNN 47.0 30.7 25.5 18.7 64.8

TABLE II: Comparison of the proposed methodology with the previous existing state-of-the-art methods

Author Methodology Characters task Digits task Objects task

Tirupattur et al. [26] CNN 71.2% 72.9% 73.0%
Jolly et al. [27] CNN and GRU − − 77.4%

Kumar et al. [11] RF 66.9% 68.5% 65.7%
Kumar and Scheme [13] CNN 71.0% 66.4% 72.0%

Stacked LSTM 84.2% 75.7% 82.4%
CNN and LSTM 87.1% 82.8% 86.6%

CNN, LSTM, and MV 90.1% 85.1% 89.4%
Tripathi [6] (δ rhythm + β rhythm + γ rhythm), CNN, and LSTM 87.3% 85.9% 87.5%

Mishra and Bhavsar [10] Siamese model (online) 74.8% 76.2% 77.9%
Siamese model (offline) 73.8% 75.2% 75.9%

1D CNN-based approach 74.3% 75.6% 76.7%
Proposed methodology SGWT and ET 92.7% 92.4% 92.3%

Abbreviations: CNN - convolutional neural network, GRU - gated recurrent unit, RF - random forest, LSTM - long short-term memory, MV - majority
vote, SGWT - spectral graph wavelet transform, and ET - extra trees.
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methods with RF and KNN classifiers and also the state-
of-the-art methodologies by achieving highest accuracies of
92.7%, 92.4%, and 92.3% for recognition of characters task,
digits task, and objects task, respectively. The methodology
with SGWT and ET can be used for the applications of brain-
computer interface (BCI) or HCI for communicating with the
people having speech impairments. The proposed framework
can be studied for subject-specific cases as a part of future
work. In future, the proposed framework can be compared
with the use of various other signal analysis methods, features,
and classification techniques in order to get a comprehensive
comparison. The use of statistical tests can be studied in the
proposed framework as a part of future work.

APPENDIX

Approximate computation of SGWT
When SGWT is computed directly, its complexity is O(N3)
with a memory requirement of O(N2) which makes it fea-
sible only for the graphs that have lesser number of nodes.
To rectify this computational issue, an approximate method
based on truncated Chebyshev polynomials is used [28]. The
kernel µ(tj , λ) used in SGWT evaluation is approximated with
low-dimensional Chebyshev polynomials which is given as,
µ(tj , λ) ≈ 1

2

(
cj,0 +

∑Dj

k=1 cj,kTk(λ− 1)
)

. Here, Dj repre-
sents the degree of the approximation which is typically set to
Dj = 50. The function Tk(λ) denotes the k-th order shifted
Chebyshev polynomial which satisfies the relation, Tk(λ) =
2λTk−1(λ)−Tk−2(λ). The coefficients cj,k are the Chebyshev
coefficients which are estimated using a spectrum upper bound
λmax [29]. In the approximated form, the transforms are
expressed as [28], ψTtj ≈ 1

2cj,0x+
∑Dj

k=1 cj,kTk(L− 1)x and
φ
tj
x ≈ 1

2cj,0x+
∑Dj

k=1 cj,kTk(L− 1)x, where T0(L) = I and
T1(L) = L− I . This approximation allows the Laplacian ma-
trix L to be applied efficiently via matrix-vector multiplication
which makes it fast for the sparse graphs.
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