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Abstract—EEG-based brain-computer interface (BCI) aims
at decoding brain signals into commands. Features used for
classification depend on the paradigm and its neurophysiological
correlates. EEGNet, a compact convolutional neural network, was
proposed to deal both with event-related potentials and motor
imagery paradigms. This paper demonstrates that adding a low
computational cost variance layer to EEGNet is beneficial for
motor imagery as it reduces feature dimension and improves
classification results. A mathematical description of EEGNet is
also given. Convincing results are shown on a BCI competition
dataset with a mean improvement of 2.1% with the addition of
the variance layer. Finally, the paper both describes intra- and
inter-session results with a first-order statistics transfer learning
strategy.

Index Terms—Brain-Computer Interface,
Imagery, Deep Learning, Transfer Learning

EEG, Motor-

I. INTRODUCTION

Processing electroencephalographic (EEG) signals is a chal-

lenging task notably due to the very nature of these signals.
One major field of EEG signal processing is Brain Computer
Interface (BCI) that aims at translating EEG signals into
commands using machine learning tools. BCI application is
two-fold: on one side it helps people with motor disorders
or affected by neurodegenerative diseases and on the other
side, healthy people can benefit from technologies integrating
BCIs to enhance performances [1]. In this paper, we focus
on Motor Imagery (MI) paradigm. It consists of the mental
imagination of limb movements without any muscle activation.
Such a task is sufficient to observe brain activation in the
same sensorimotor cortex area as if the actual movements were
executed.
The particularity of EEG signals is their space-frequency
dependency. For a healthy human EEG, the range of frequen-
cies observed is between around 7 and 35 Hz in MI. Those
frequencies are subdivided into several groups : alpha (8-12
Hz) and beta (12-30 Hz) are the two main brain rhythms in
MI. More precisely, in the motor cortex, the mu rhythm —
also known as the sensorimotor thythm (SMR)— characterizes
the EEG signals as being an oscillation observed in the
alpha band often synonym of resting or idle state. Therefore,
motor behaviors result in a change in the ongoing EEG in
form of an event-related desynchronization/synchronization
(ERD/ERS) [2]. The spatial aspect is captured through the
numerous electrodes placed on the scalp.
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EEG analysis is very subject and session-dependent. To cope
with subject’s variability, research in transfer learning (TL)
has been carried out notably through domain adaptation, deep
neural network methods and subspace learning [3].
Space-frequency characterization translates usually into two
stages : spatial and frequency filtering [4], [S], [6]. Such
spatial filters are for instance applied on the frequency filtered
EEG data in order to find a projection of the data that has
maximal power or variance in one axis and minimal variance
in another. Then the log-variance of the signals is often taken
as feature for subsequent classification. This processing chain
is for instance encountered in the Common Spatial Patterns
(CSP) method [5].

Later it has been improved into the Filter Bank Common
Spatial Pattern (FBCSP) [6] in order to capture narrow-
band frequencies that consider subject-specific modulations.
Yet it requires predefined frequency bands. To alleviate this
issue Lawhern et al. [7] developed a deep neural network,
EEGNet, based on convolutional layers learning temporal and
spatial filters to specifically process EEG signals in an end-to-
end manner. This approach shows better performances than
some State-of-the-Art methods [7], [8]. One advantage is
its versatility since it has been used across different EEG-
based paradigms without any architecture change: P300 visual-
evoked potentials, error-related negativity responses (ERN),
movement-related cortical potential (MRCP) or MI. Other
deep learning methods have also been proposed — for instance
[9] — but we will focus on EEGNet in this study.

This paper proposes two main studies. The first one aims at
improving the original EEGNet proposed in [7] in an efficient
way, by using as feature for classification the log-variance
of the filtered signals, inspired by the CSP method. We will
show the contribution of adding a log-variance layer with the
EEGNet and how this modification improves the network in
both intra- and inter-session evaluation framework. Through
the second one, we will perform a basic transfer learning
(TL) procedure to improve the performances when testing on
another session.

II. METHODS

This section gives first a mathematical description of EEG-
Net to better understand the key operations underlying the net-
work architecture. The new variance layer is then introduced.
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TABLE I
EEGNET PARAMETERS FOR TWO DIFFERENT EEGNET-L1, D
ARCHITECTURES.

Ki | L1 | N1 | Ko | N2 Np
EEGNET-4,2 8 4 64 8 16 1,660
EEGNET-8,2 | 16 8 64 16 16 3,444

Table I gives the values of the parameters of two EEGNet
architectures.

A. EEGNet

The EEGNet is a convolutional neural network (CNN) tai-
lored for EEG-based BCIs and developed by Vernon Lawhern
in 2018 [7]. The input of EEGNet is a mean-centered EEG
epoch X with size N¢ x Np where N¢ is the number of
channels and N7 the number of time samples.

1) The first processing block regroups both the temporal
and depthwise convolutions.

z{) = Wi X nl"] (1)

Because the temporal filters hgl) are 1-d, (1) is the 2D-
convolution (x2) of each row of the epoch X with the
same filter of size 1 x N;. The dimension of WY) is
D x N¢. This spatio-temporal filtering is repeated for
L, frequency bands. The output of the first block is the
epoch Z; with size K; x Np with K1 = D - L the
number of feature maps produced by the first block.

2) The second block contains the separable convolution and
implements

Z, =W, [Zl(i 4) *2.s Hz} )

The operator %3 , indicates the ’separable’ convolution
where each row of Z is filtered with a different filter.
The dimension of Hs is K1 x Ny while the dimension
of Wy is K5 x K;. The output of the second block is
the epoch Zy with size Ko x (Np/4).

3) The last step of EEGNet is a standard fully connected
layer followed by a softmax that generates the probabil-
ity vector

z3 = softmax [W3 vec [Z2(] 8)]] 3)

The dimension of W3 is C' x K(Np/32) with C the
number of MI tasks (here C' = 4).

The number of learned parameters is easily computed as :
N, = L1N1 + Ki(N¢ + Na + Ks) + C[1 + Ko(Np/32)]

The EEGNet also contains batch normalization layers after the
temporal, the depthwise and the separable convolutions which
adds respectively 2(L; + K1 + K») parameters to the EEGNet
model.

B. varEEGNet

We propose to add a new layer that computes the logarithm
of the variance of each spatially-temporally filtered signal Zs.
The last layer generates the probability vector

z3 = softmax [W3 log (V{Z2})] “)

where V {Zy} returns a K5 x 1 column vector that contains
the variance of each row in Zs. The dimension of W3 is now
C x K, instead of C' x Ky(Nr/32).

As it appears in the CSP method, taking log-variance as feature
for MI classification turned out to be relevant. Indeed, the log-
variance allows to capture efficiently the power variations in
different frequency bands. This is ideal for detecting neuronal
rhythms. Especially for EEG signal processing where the
signals present many variations and highly vary between sub-
jects and sessions. Applying the logarithm amplifies relative
differences in the data.

S Log-variance N
&
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Fig. 1. varEEGnet : our proposed improvement of the EEGNet by adding
a log-variance layer. The log-variance layer computes the logarithm of the
variance along the temporal dimension of the feature maps resulting from the
EEGNet.

One notes that performing this operation along the temporal
dimension squeezes it, reducing at the same time the di-
mension. The EEGNet produces a feature vector of length
K5 - N1 /32 while our method varEEGNet outputs a feature
vector of length Ko.

C. Transfer learning

In order to improve inter-session evaluation results, we

rely on an efficient transfer learning technique. The method
involves geometrically whitening the input data from both
sessions so that they present similar distributions to first order.
Let X,, be the n-th zero-mean trial of one session of size
N¢ x Np. We first compute the sample covariance (SCM)
matrix for each trial : C,, = ﬁXnXZ. The geometric
mean & of a session is given by the Fréchet mean of
all the covariance matrices from the different trials in it:
&(Cy,...,Cn) = argmingep(y,) SN 6%(C, C,,) where
dp is the Riemannian geodesic distance and P(N..) the set of
N¢ x Ne symmetric positive definite (SPD) matrices. It is
computed in an iterative manner as in [4].
The idea behind data geometric whitening is to transform them
such that the transformed geometric mean of each session
becomes identity. So we are looking for a matrix W such
that WGssion W7 = Iy, where Gession is the geometric
mean of a session and Iy denotes the identity matrix of size
N¢. A possible choice is obviously W = G_ /2

session”
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TABLE II
EEGNET-8,2 ACCURACY RESULTS (IN %) FOR EACH SUBJECT IN INTRA- AND INTER-SESSION. THE AVERAGE ACCURACY IS CALCULATED OVER ALL
SUBJECTS AND WHEN REMOVING THE LESS RESPONSIVE ONES (S2, S5, S6). THIS TABLE SHOWS THE IMPACT OF THE LOG-VARIANCE LAYER.

H Evaluation framework | log-var layer l S1 S2 S3 S4 S5 S6 S7 S8 S9 l AVG (£SD)  AVG (£SD) best subjects H
intra-session X 729 500 834 509 438 434 733 826 63.6 | 62.7 (£16.1) 71.1 (£12.3)
intra-session 70.0 50.7 83 482 319 427 632 777 784 | 60.6 (+18.0) 70.1 (£12.8)
inter-session X 727 455 799 504 385 457 58.1 68.9  65.1 58.3 (£14.2) 65.9 (£10.5)
inter-session 71.1 38.3 829 464 31.8 39.1 56.1 68.0 68.6 | 55.8 (£17.8) 65.5 (£12.7)

TABLE III

EEGNET-4,2 ACCURACY RESULTS (IN %) IN THE SAME FRAMEWORK AS TABLE II.

H Evaluation framework | log-var layer | Sl S2 S3 S4 S5 S6 S7 S8 S9 ‘ AVG (£SD)  AVG (£SD) best subjects H
intra-session X 743 50.0 82.0 427 365 448 695 754 622 | 59.7 (+16.6) 67.7 (£13.9)
intra-session 726 412 8.6 423 351 403 562 694 777 | 57.5(£18.4) 66.8 (£15.0)
inter-session X 693 434 792 469 384 426 598 654 66.1 56.8 (+14.3) 64.5 (£10.7)
inter-session 684 41.8 80.0 427 319 390 534 665 679 | 54.6 (£16.7) 63.2 (£13.1)

TABLE IV

VAREEGNET-8,2 ACCURACY RESULTS (IN %) IN THE SAME FRAMEWORK AS TABLE II. THIS TABLE EMPHASIZES THE SIGNIFICANCE OF TRANSFER
LEARNING WITH EEG INTER-SESSION FRAMEWORK.

H Evaluation framework | Whitening data [ S1 S2 S3 S4 S5 S6 S7 S8 S9 [ AVG (£SD)  AVG (£SD) best subjects H
inter-session 727 455 799 504 385 457 581 689 65.1 | 583 (£14.2) 65.9 (£10.5)
inter-session X 717 464 811 517 397 456 69.0 75.0 66.1 | 60.7 (+15.0) 69.1 (£10.0)

Finally the whitened transformed data is : X,, = G;isioan.
The goal is to apply geometric whitening on both sessions in
order to take care of the existing covariance shift between
them. Algorithm 1 describes this procedure applied for both
sessions.

Algorithm 1 Data geometric whitening for inter-session trans-
fer learning

Input: X!", X! the n-th trials of the training, testing ses-
sions. _

Output: X! the whitened data of the training sessions.

Output: X' the whitened data of the testing session.

Training :

Compute C!" the SCM of X!".

Compute Gy = &(CY",...,CY)

return X" = G,,'/*X!" [Transformed training data]

Train EEGNet model with the whitened data.

Testing :

Compute CI¢ the SCM of X'¢.

Compute G = &(C¥e,...,CL)

return X' = G,.'/?Xt¢ [Transformed testing data]

Test EEGNet model in inference with the whitened data

Eal I

III. RESULTS
A. Dataset

The EEG data we will be using for this study come from the
public dataset BCI Competition IV 2A that can be found on
MOABB (https://moabb.neurotechx.com/docs/api.html). The
signals were recorded using 22 electrodes, sampled at 250
Hz. This dataset comprises 2 sessions where the electrodes
remain fixed on the subject’s scalp. Each session corresponds

to a series of 6 runs separated by short breaks. 9 subjects
were asked to perform motor imagery tasks which consists of
4 classes of movements : left hand, right hand, feet and tongue;
following a specific protocol [8]. One refers to an epoch or
a trial as a segment within a run triggered by an external
stimulus (the cue) corresponding to one mental MI task. In
total there are 72 trials per class (12 per run), yielding a total
of 288 trials per subject. We will both evaluate intra- and inter-
session performances. Intra-session evaluation is performed on
the first session for each subject by dividing the trials into a
training set and a test set using five stratified K-fold splits. The
final classification score is obtained by averaging over the five
splits. For inter-session evaluation, for each subject, the model
is trained on the first session and tested on the second session.
We used 5-fold cross-validation. As mentioned in the literature
[8], this reduces the risk of overfitting.

B. Preprocessing

The EEG signals are bandpass-filtered between 8 and 32 Hz,
and each trial has a length of four seconds starting from the
cue (1,000 samples). The preprocessing steps and the model
parameters are chosen in order to stick to the framework of
MOABB’s study which goal is to offer a proper and efficient
mean of comparison between existing algorithms [8]. The data
are centered and have zero mean.

C. Performances

Table II and III regroup the performances in terms of
accuracy in different evaluation frameworks. It emphasizes
the impact of adding the log-variance layer for two EEGNet
architectures : EEGNet-8,2 and EEGNet-4,2. First, we find
consistent results with the literature [8], that is around 60%

1479



average accuracy in intra-session for the EEGNet-8,2 model.
Then it was found in [7] that on BCI Competition IV 2A
dataset, EEGNet-8,2 performs better than EEGNet-4,2, that is
also a result we observe through the tables obtained with the
mentioned preprocessing.

The main results are about the varEEGNet model. Adding the
log-variance layer slightly improves the performances with a
2.1% (resp. 2.2%) gain in intra-session and 2.5% (resp. 2.2%)
in inter-session for EEGNet-8,2 (resp. for EEGNet-4,2). We
note that these dynamics also preserved when averaging on
the most responsive subjects. Also, as expected, the standard
deviation of the subjects is reduced when computing the log-
variance. Averaging the subject scores allows to observe that
gain, however, because of subject variability, this is not the
case for some “bad” subjects. For subject S9 computing the
log-variance deteriorates the performances. Another benefit
of the proposed method is the dimension reduction of the
features. Table V presents the number of parameters learned
by the different models. We verify that the log-variance
layer reduces that number by 57.8% using a EEGNet-4,2
architecture and by 55.7% based on EEGNet-8,2.

TABLE V
NUMBER OF PARAMETERS LEARNED FOR THE DIFFERENT EEGNET
ARCHITECTURES. VAREEGNET REFERS TO THE EEGNET MODEL WITH
THE ADDITION OF THE LOG-VARIANCE LAYER.

H Model # learned parameters H
EEGnet-4,2 1,660
varEGnet-4,2 700
EEGnet-8,2 3,444
varEEGnet-8,2 1,524

We decided to project the features of both the proposed
model and the original EEGNet on a 2-dimensional space
using t-distributed stochastic neighbor embedding (t-SNE)
algorithm [10] in order to show the benefit of using the
log-variance as feature for classification. The algorithm was
applied to the input feature vector of the fully connected
layer. Fig.2 illustrates this for subject S8. Indeed, Fig.2(b)
— displaying the features that we propose after the log-
variance layer — presents well separated classes which is
propitious for classification, while Fig.2(a) represents super-
posed classes. So at first sight, this explains why varEEGNet
performs better. However, t-SNE representation may not be
adapted for representing too high dimensional features [10],
that might explain why classes distributions on Fig.2(a) look
overlaid. Still, for a same t-SNE algorithm, varEEGNet has
better features distribution, most likely due to its low feature
dimension.

We clearly see from Tables II and III that the results in inter-
session are lower than in intra-session. So we conducted fur-
ther studies by setting up geometric whitening on the dataset
in order to improve the inter-session results for our proposed
network. The effects of the whitening transformation presented
in section II are visible on Fig.3. We observe that the whitened
data of the two sessions represented by discs and crosses in
Fig.3(b) have now the same overall mean and present similar

(a) EEGnet-8,2 features

(b) varEEGNet-8,2 features eq.(4)

Fig. 2. 2-D representation of the models features for subject S8 on training
session. F, LH, RH and T are the abbreviations for each class.

distributions. As mentioned, the results in inter-session without
whitening are weaker than in intra-session because without any
adaptation strategy, the data of the two sessions recorded for
one subject present different distributions, especially different
means Fig.3(a). With our whitening procedure described in al-
gorithm1 we partially solved covariance shift issues [11]. This
translates in an improvement of the performances, observable
in Table IV. For all subjects except S1, accuracy scores are
better when whitening the data in inter-session framework: that
is +2.4% in average and +3.2% when averaging on the most
responsive subjects. In this inter-session whitening framework
we were also able to verify a slight improvement brought by
the addition of a log-variance layer.
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(a) Original data

(b) Whitened data

Fig. 3. 2-D representation of the varEEGNet-8,2 features for subject S8
on both sessions with or without whitening. F, LH, RH and T are the
abbreviations for each class. The discs represent the data from the training
session, the crosses the data from the testing session.

D. Interpretability

In order to verify that the proposed method is not driven by
noise or artifacts in the data, we extract the learned parameters
and analyse them. We use two approaches to characterize the
features computed by our model : (1) visualising the temporal
kernel, (2) extracting spatial patterns. Temporal kernels acts as
frequency filters so plotting their Fourier transformation gives
us an idea of which frequencies are filtered. Fig.4 represents
a frequency filter for subject S8 learned by the temporal
convolution. Spatial patterns are directly extracted from spatial
filters learned by the depthwise convolution according to
Haufe’s method [12]. Fig.5 presents two typical patterns.
The selected temporal filter extracts frequencies located rather
in the alpha band represented in purple on Fig.4. This in-
formation is consistent when practicing MI [2]. The kernel
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Fig. 4. Frequency
filter extracted
from the temporal
convolution of
varEEGNet-8,2
trained on subject
S8, with random
initialization.
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Fig. 5. Two spatial patterns extracted from varEEGNet-8,2 trained on S8.
The virtual dipole approximation locates the brain activity near the electrodes
for left-right hand MI. They do not correspond to physiological brain dipoles.

size conditions the number of points for the Fourier transform.
Spatial patterns refer to the topographical distribution of the
signal across the sensor array, which can be revealed by the
spatial filters. Each of them is a component of the brain activity
representation. There are 2 spatial patterns per frequency
band that is 16 for varEEGNet-8,2, we displayed two of
them highlighting interesting appearance. Indeed, the patterns
representation Fig.5 is similar to the electrical activity of a
dipole which would have been placed at the surface of the
brain at the motor cortex area which is active when performing
left and right hand MI. So this is characteristic of the left-
right hand motor imagery [5]. It means that these two patterns
better characterizes left hand (right pattern) and right hand (left
pattern) movements among the four MI tasks after training.

IV. DISCUSSION

The two main areas of focus addressed in this paper show
great results and are easy to handle and to implement. In this
section we will discuss some results.

Firstly, as mentioned, with EEG signals there is an important
variability between subjects and sessions. Some subjects are
naturally less responsive than others when performing the
protocol. This is why sometimes some accuracy values could
seem low. That is also one of the reasons why we computed
the mean removing less responsive subjects in Table II and
III, because their data can be difficult to interpret.

Moreover, something to keep in mind when working on Al-
based method is reproducibility issues. The fact that each
learned model is different will produce slightly different
evaluation results. Yet the trends and orders of magnitude
should stay the same.

It is also of note that for the study of interpretability not all

filters learn relevant information. Indeed among the frequency
filters extracted some of them do not present the characteristic
peak in the alpha band. So a further study would be to analyse
which convolution kernels contribute the most to get great
accuracy results. We can draw a similar reasoning on spatial
filters.

Finally, while the intra-session score of 62.7% from Table II
is not reached with whitening in the framework of Table IV
it might be because the transformations applied on the two
sessions are basic. Theoretically we could work more on the
two sessions to match their distributions better, for example
by performing scaling or rotation operations [13].

V. CONCLUSION

This article presents a low computational cost method in
order to improve EEGNet performances for MI. This is done
by adding a log-variance layer downstream of the EEGNet
model to extract proper features for classification. This does
not only improve performances but also reduces the features
dimension and at the same time the number of parameters
learned by the network. What has been addressed here, could
potentially be applied as well on other convolutional neural
networks in EEG MI, for instance [9]. Furthermore, to cope
with inter-session evaluation framework, we used transfer
learning and implemented a whitening operation on data which
increased classification accuracy in this scenario.
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