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Abstract—Synthesizing full speech from electroencephalogra-
phy (EEG) signals is a challenging task. In this study, we
investigate the reconstruction of continuous speech that a listener
has perceived from non-invasive EEG using a Transformer-based
deep learning model. Rather than utilizing the entire brain
signal, we examine which brain regions yield more accurate
extraction of speech features related to the perceived speech. To
determine the localization of underlying information related to
voice characteristic differences and phoneme prediction from the
auditory EEG, electrodes are segmented by region, and speech
features are inferred for each. The results imply that selective
electrode placement may enable the concurrent extraction of
speaker-identifying and linguistic information.

Index Terms—Non-invasive electroencephalography (EEG) ,
brain-machine interface (BMI) , speech synthesis, speech recog-
nition, Transformer

I. INTRODUCTION

Brain machine interface (BMI) research encompasses the
development of technologies that enable the control of com-
puter systems solely through thought. A notable subset of this
research involves the extraction of linguistic information from
neural activity and its subsequent synthesis into speech. In this
study, our primary focus is on the reconstruction of continuous
speech that a listener has perceived from non-invasive EEG.
The potential of this approach lies in its promise to provide
a means of vocal communication for individuals who have
lost the ability to speak due to medical conditions or other
impairments. Specifically, this study focuses on reconstructing
speech that a listener has perceived from their non-invasive
EEG signals. This line of research is crucial as it not only helps
us understand the neural correlates of speech perception but
also lays foundational groundwork for future advancements,
such as neural hearing aids that could provide real-time
feedback of perceived sounds, or silent speech brain-computer
interfaces aimed at vocalizing internal thoughts or unvoiced
utterances for individuals with communication impairments.

BMI are generally categorized into two types, invasive and
non invasive based on the techniques used to record neural
activity. Electrocorticography (ECoG) is an invasive modality
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that entails positioning electrodes on the surface of the brain,
and it has been utilized to extract neural signals for high-
precision speech synthesis [1], [2]. Previous studies have
demonstrated the synthesis of intelligible speech by combining
neural activity with articulatory movements; however, com-
plete speech synthesis using solely neural signals, without
incorporating mouth movement information, has not yet been
achieved. Moreover, the surgical requirements for electrode
implantation in invasive techniques contribute to their higher
cost.

Conversely, electroencephalography (EEG) is a non-invasive
approach that records electrical signals via electrodes placed
on the scalp, offering a more convenient and less risky
means of monitoring brain activity. Nevertheless, synthesizing
comprehensive speech sounds from EEG data remains more
challenging than using ECoG. Despite these challenges, recent
research has successfully synthesized two short vowels with
high intelligibility from EEG recordings by employing a
simple neural network designed to infer phonetic features [3].
This suggests that more complex network architectures may
improve the performance of EEG-based speech synthesis.

We hypothesized that by utilizing the Transformer [4]
model, which is known as a powerful tool for processing
sequential signals, we could extract more complex informa-
tion from EEG recordings obtained during continuous speech
perception [5]. To examine this hypothesis, we conducted
experiments in which we attempted to convert EEG signals
into speech using a Transformer-based model. Our findings
revealed that the EEG data indeed contained speaker-specific
information, since it was possible to synthesize speech that
preserved the original voice characteristics from EEG signals
corresponding to two different speakers. However, the extrac-
tion of linguistic information, such as phoneme sequences
and textual representations, proved to be challenging. Al-
though one advantage of using EEG is the ability to capture
whole-brain data, this may also lead to an overabundance
of information. In light of this, we posited that narrowing
the focus to specific EEG regions could potentially yield
more accurate information extraction. Additionally, one of
the specific objectives of this study was to examine whether
there exists neural specificity in brain regions that distinguish
differences in speech quality. In this study, we divided the EEG
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electrodes into distinct regions and predicted speech features
from each region. This approach enabled us to investigate
which electrodes retain the most critical information when
inferring speech features from EEG data.

II. RELATED WORK

In our previous work, we adopted the voice transformer
network (VTN) [6] based on the Transformer architecture [4]
to reconstruct speech from EEG signals recorded during au-
ditory perception [5]. Given that voice conversion techniques
transform the speech of one speaker into that of another while
preserving linguistic content and speaking style, we anticipated
that such a model would be effective for handling time-series
signals like EEG. This method employs a Transformer-based
architecture that comprises an encoder and a decoder to map
an input EEG sequence xi., = (x1,...,@,) € R®*" to a
target speech sequence y;.,,, = (Y1, --,Y,,) € RH*". Here,
dx and dy denote the dimensions of the respective features.
Note that the EEG sequence has a length of n and the target
speech sequence has a length of m, and these lengths are not
necessarily identical.

Additionally, similar to previous studies [5], We used guided
attention [9] to reduce the risk of using brain wave information
from periods when the subject was not listening during the
speech reconstruction. The guided attention can make the
attention matrix A, whose rows are attention weights a,
be approximately diagonal. In this approach, it is applied
through diagonal weighting that penalizes deviations from
the expected temporal correspondence. By imposing this con-
straint, the model is encouraged to associate EEG signals
only with the vicinity of the speech segments that temporally
align with the listener’s auditory experience. This strategy
effectively mitigates the risk of incorporating irrelevant brain
wave information from periods when the subject was not
actively listening, thereby preventing extreme contradictory
associations (e.g., pairing the last second of the EEG with
the first second of the audio). The loss function of guided
attention is defined as follows:

Latt (A) = Ept [Aptht]7 (1)
with .
Wy =1—exp (—(Ig_zT)Q) . 2)
2g

In this context, let p denote the position of a character or
word in the text, with P representing the total number of
positions. Similarly, let ¢ be the index of a time step in the
audio sequence, and T’ its total duration. The element A,; in
the attention matrix A quantifies the correspondence between
the text at position p and the audio at time ¢; higher values
indicate a stronger correlation, while lower values indicate a
weaker one. Moreover, W), is an entry in the weight matrix
employed to compute the guided attention loss, as specified in
Eq. (2). The parameter g governs the variance of the associated
Gaussian function, thereby modulating the penalty based on
the distance between text position p and time step ¢.
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Fig. 1. Left: EEG divided into 6 electrodes, Right: EEG divided into 10
electrodes.

III. SPEECH PREDICTION BY SEGMENTATION OF EEG
ELECTRODE SETS

To investigate which EEG electrode signals contain the
most critical information for inferring speech features, we
partitioned whole-brain auditory EEG data into groups of 6 or
10 electrodes. These subsets were paired with corresponding
speech signals, and a VIN model was trained accordingly.
An objective evaluation was then conducted on the speech
generated from the EEG data.

A. EEG measurements and dataset preparation

In this study, we followed the methodology of our previous
work by recording and processing EEG signals during speech
perception, thereby creating a dataset of EEG responses to
auditory stimuli. Speech materials were selected from the ATR
Phoneme Balanced 503-sentence corpus [10], comprising ut-
terances by both a male speaker (MMY) and a female speaker
(FTK). To create the EEG and speech dataset, utterances
from both speakers were presented to a single experimental
participant at one-second intervals, and the corresponding EEG
responses were recorded using the Biosemi ActiveTwo system
(Biosemi). Triggers marking the onset of speech for each
sentence were also recorded. The EEG signals were then
sampled at a rate of 8192 Hz, band-pass filtered (1-40 Hz),
and downsampled to 256 Hz. Independent component analysis
(ICA) was employed to remove ocular artifacts. However, due
to the presence of residual artifacts in TPS, this electrode
was discarded, and TP7 was also omitted to maintain bilateral
symmetry, resulting in a total of 62 electrodes. For each of the
503 sentences, the EEG data were segmented from the onset
trigger to one second after speech ended and standardized per
electrode. Subsequently, electrodes were grouped into regions
comprising 6 or 10 electrodes. The electrodes divisions are
illustrated in Figure 1 and the electrodes in each region are
listed in Tables 1 and 2.

Hereinafter, the regions and electrode sets are referred to
as Set 1, Set 2, etc. For the training set, speech signals were
resampled to 16 kHz and subsequently transformed into log-
amplitude Mel-spectrograms using an FFT with a size of 1024,
a hop size of 256, and a Hann window. The Mel filter bank
consisted of 80 filters spanning the frequency range from
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TABLE I
SEGMENTED ELECTRODES REGION (6 ELECTRODES)

Number electrodes List

1 Fz, F1, F3, F5, F7, AF7
2 Fpz, Fpl, Fp2, AFz, AF3, AF4
3 Fz, F2, F4, F6, F8, AF8
4 AF7, F7, FT7, T7, P7, P9
5 F5, FC5, C5, CP5, P5, PO7
6 FCz, FCI, FC3, Cz, Cl, C3
7 FCz, FC2, FC4, Cz, C2, C4
8 F6, FC6, C6, CP6, P6, PO8
9 AFS8, F8, FT8, T8, P8, P10
10 CPz, CP1, CP3, Pz, P1, P3
11 CPz, CP2, CP4, Pz, P2, P4
12 Pz, P1, P2, P3, P4, P5, POz
13 PO3, PO4, Oz, O1, 02, 1z

TABLE II
SEGMENTED ELECTRODES REGION (10 ELECTRODES)

electrodes List

Fpz, Fpl, AFz, AF3, AF7, Fz, Fl, F3, F5, F7
Fpz, Fp2, AFz, AF4, AF8, Fz, F2, F4, F6, F8
FC1, FC3, FC5, FT7, Cl, C3, C5, C7, CP3, CP5
FCz, FC1, FC2, Cz, Cl, C2, CPz, CPI, CP2, Pz
FC2, FC4, FC6, FT8, C2, C4, C6, C8, CP4, CP6
CP1, CP3, CP5, P1, P3, P5, P7, P9, PO3, PO7
CP2, CP4, CP6, P2, P4, P6, P8, P10, PO4, PO8
Pz, POz, PO3, PO4, PO7, PO8, Oz, O1, 02, Iz
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80 Hz to 7,600 Hz. The complete dataset was divided into
training, validation, and test sets in a ratio of 480:12:11. Since
separate datasets were constructed for the MMY and FTK
recordings and then integrated, the final dataset comprised
960 training sentences, 24 validation sentences, and 22 test
sentences.

B. Model detail

By applying VTN’s architecture to EEG signal processing,
we aimed to synthesize continuous speech from EEG signals.
The model that extracts speech features from EEG data is
illustrated in Figure 2. This architecture is a combination of the
Transformer framework and Tacotron2 [11]. The Transformer,
originally designed for machine translation, has been adapted
for speech synthesis. In this configuration, the PreNet from
Tacotron2 is added to the decoder. The PreNet, composed

of multiple fully connected layers, dropout, and linear trans-
formations, serves as a preprocessing network that converts
the input mel spectrograms into dimensions more suitable for
the decoder. In addition, position embeddings with learnable
weights to adapt to the scales of the text and acoustic feature
spaces, a linear projection to predict the output acoustic
features, a linear projection to predict the Stop Token, and a
PostNet consisting of a 5-layer CNN to predict the residual are
incorporated. With the exception of the introduction of guided
attention loss, the hyperparameters—including the learning
rate and model architecture details (e.g., the number of layers
and hidden dimensions)—were retained almost unchanged
from the original VTIN!. The input dimension and convolution
kernel were changed in order to use EEG as input. Originally,
the model was designed for 80 dimensional input, and the
convolution for temporal subsampling in the encoder was
designed to use a (3,3) kernel twice in the time direction.
However, since this convolution is not possible when the input
is 6 electrodes, the kernel size of the convolution was changed
to (1,3). During training, we employed an overall loss function
that integrates the L1-based reconstruction loss Ly; and the
binary cross-entropy loss Lpcrp—the two losses originally
utilized in VIN—along with the previously described guided
attention loss L. [9]. This loss function is defined as follows:

3)

Here, o and 3 denote the weights applied to the binary cross-
entropy loss and the guided attention loss, respectively. In our
experiments, we set @« = 10 and § = 1, and we set the
hyperparameter g in Ly to 0.4.

For Parallel WaveGAN [12] used as a vocoder, a two-
speaker model of MMY and FTK was trained and used for
the experiment. The sampling rate was 16 kHz, and the default
parameters of Parallel WaveGAN 2 were used otherwise.

L =Lp +aLpce + BLaw.

IV. RESULT AND DISCUSSION
A. Validation Items

In order to evaluate the naturalness of the synthesized
speech and the phonemic content contained therein, objective
evaluation metrics were applied to the speech generated from
the test dataset. The following metrics were employed:

o PER (Phoneme Error Rate)

o Phoneme set matching rate (Dice coefficient, hereafter

abbreviated as PSMR)

¢ SVM-based speech classification accuracy (hereafter ab-

breviated as SVM)

e UTMOS (UTokyo-SaruLab MOS prediction system) [13]

PER is intended to measure the preservation of linguistic
information by quantifying phoneme errors, where a lower
value indicates fewer errors. Let S denote the number of
phoneme substitutions, D the number of phoneme deletions, I
the number of phoneme insertions, and NV the total number of
phonemes in the reference transcript. S, D, I are computed by

Thttps://github.com/unilight/seq2seq-vc/tree/main/egs/arctic/vcl
Zhttps://github.com/kan-bayashi/Parallel Wave GAN
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counting the number of substitutions, deletions, and insertions
in the transcription texts of the synthesized speech and the
corresponding ground truth speech. PER is then calculated as

follows:
S+D+1

N

PER is used as a metric to assess the extent to which the
ground truth speech retains linguistic information.

In contrast, PSMR is utilized to evaluate the matching
rate of the phoneme sequence. By disregarding the temporal
order, this measure assesses whether the phonemes have
been correctly reconstructed on a phoneme-by-phoneme basis,
addressing issues observed in previous experiments where
generated speech failed to retain linguistic information and
temporal alignment. To compute this, we employed an acoustic
model fine-tuned from Wav2Vec 2.0 [14]—which outputs
Japanese hiragana for speech recognition®>—to convert the
speech into hiragana, and subsequently into phonemes for
evaluation. PSMR was computed by extracting the phonemes
from both the synthesized and ground truth speech (using the
same method as for PER), removing duplicates, and forming
sets without considering their sequential order. The matching
rate is then determined using the Dice coefficient:

2x|XNY]
X[+ Y]

PER = “4)

Dice = (®)]
where X and Y denote the two sets being compared, | X NY|
is the number of common elements between sets X and
Y, and |X]|, [Y] represent the number of elements in each
set, respectively. A higher Dice coefficient is expected when
the correct phonemes are captured. Evaluating both PER and
PSMR simultaneously provides a comprehensive assessment
of the linguistic fidelity in synthesized speech—if both metrics
yield favorable outcomes, namely a high PSMR combined
with a low PER, it confirms that the synthesized speech not
only captures the complete set of phonemes but also preserves
their proper temporal order, thereby ensuring a high degree of
linguistic fidelity and naturalness.

The SVM was employed as a metric to evaluate whether
the synthesized speech accurately reproduced the voice of one
of the two speakers. The mel-frequency cepstral coefficients
(MFCC) of the correct speech were computed using 20-frame
segmentation, and a speaker identification model (with an
accuracy of 94%) was trained for this purpose. This SVM
model was then used to classify the synthesized speech as
either male or female, and its classification accuracy was
assessed.

UTMOS serves as a metric for evaluating speech quality,
analogous to MOS, by assigning scores on a S5-point scale
(from 1 to 5), with values closer to 5 indicating higher speech
quality. Moreover, as UTMOS has been trained on speech
data of varying quality, it is utilized to assess the overall
impressions of naturalness and clarity of the synthesized
speech.

3https://huggingface.co/vumichien/wav2vec2-large-xlsr-japanese-hiragana

Furthermore, to comprehensively evaluate these metrics, we
introduce the Score for each model defined in Eq. (6). Note
that, since lower PER values indicate better performance, the
PER metric was transformed by subtracting it from 1 prior to
applying. UTMOS was processed to have a maximum value
of 1 and a minimum value of 0 in the calculation.

(1 — PER) + PSMR 4 SVM + UTMOS=1
4
B. Effects of electrode selection

Tables IIT and IV present the evaluations of PER, PSMR,
SVM, UTMOS, and Score for the generated speech of the
models trained using the EEG data from the respective elec-
trode sets.

Regarding PSMR and PER, although values varied de-
pending on the electrode set, statistical tests revealed no
significant differences in any electrode area when compared
to the full-electrode configuration. This lack of statistical
significance is likely attributable to the large variance within
the data and the limited test dataset of 22 items. Nevertheless,
even without reaching statistical significance, numerical trends
towards improvement were observed in some electrode sets.
For example, in the 10ch configuration, PER for Set 4 (p-value
0.315) and Set 5 (p-value 0.299), and in the 6¢ch configuration,
PSMR for Set 2 (p-value 0.239) and Set 9 (p-value 0.064),
as well as PER for Set 5 (p-value 0.254) and Set 9 (p-value
0.2739), showed lower p-values compared to the full-electrode
configuration, suggesting a trend towards improvement. In
specific regions, PER showed a numerical tendency to improve
when compared to the full-electrode configuration. However,
PSMR did not show a similar improvement trend, particularly
in the 10ch configuration. This observation can be interpreted
as suggesting an ability to approximate the ground truth
with higher precision in terms of the number of phonemes
extracted from the predicted speech. Conversely, in Set 9 of
the 6ch configuration, PER showed an improvement trend
while PSMR showed a decline, with the p-values indicating
a relatively strong tendency for these trends. This result
suggests that while there might be challenges in the variety or
comprehensiveness of phonemes generated by the model (in-
dicated by decreased PSMR), the sequencing of the generated
phonemes (indicated by decreased PER) is relatively accurate,
demonstrating a limited precision. Specifically, this can be
interpreted as the model attempting to reliably extract and gen-
erate only certain, for example, more recognizable phonemes
from the EEG signals, thereby avoiding the generation of
uncertain phonemes and consequently keeping PER (phoneme
substitutions, deletions, and insertions) low. This suggests a
state where the model prioritizes precision, potentially at the
expense of comprehensiveness. Further comparison with SVM
classification accuracy revealed that electrode sets with higher
SVM accuracy tended to have lower PER values. Notably, for
both the 6-electrode and 10-electrode configurations, the top
three electrode sets in terms of SVM accuracy consistently
demonstrated numerically better PER performance compared
to the full-electrode configuration. UTMOS values generally

(6)

Score =
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TABLE III
COMPARISON OF ELECTRODE SET PERFORMANCE (6 ELECTRODES).

No. PER(]) PSMR(T) SVM(T) UTMOS(T) Score(T)

All 0.596 0.732 0.832 1.31 0.511
1 0.615 0.736 0.660 1.30 0.464
2 0.574 0.702 0.742 1.29 0.485
3 0.591 0.737 0.758 1.31 0.496
4 0.591 0.745 0.695 1.30 0.481
5 0.560 0.738 0.671 1.29 0.481
6 0.591 0.724 0.636 1.30 0.461
7 0.593 0.723 0.615 1.30 0.455
8 0.590 0.722 0.729 1.32 0.485
9 0.563 0.683 0.744 1.30 0.485
10 0.575 0.739 0.571 1.29 0.452
11 0.597 0.711 0.672 1.29 0.465
12 0.579 0.730 0.669 1.30 0.474
13 0.590 0.729 0.636 1.30 0.463

TABLE IV

COMPARISON OF ELECTRODE SET PERFORMANCE (10 ELECTRODES).

No. PER(}) PSMR(T) SVM() UTMOS(1) Score(t)

Al 0588 0733 0.876 131 0.524
1 0576 0733 0.864 131 0.525
20601 0719 0.776 131 0.493
30569 0727 0.818 129 0.512
4 0561 0725 0.821 133 0.517
50563 0734 0.831 131 0.520
6 0569 0734 0.758 1.28 0.498
70592 0735 0.692 129 0.477
§ 0578 0728 0.773 130 0.500

tended to be lower, likely due to the diminished linguistic
content in the generated speech and the tendency of its acoustic
features to differ from natural human speech.

Additionally, the Score metric varied among electrode sets;
while the full-brain configuration achieved the highest overall
score, specific electrode sets (namely, sets 2, 3, 8, and 9 in the
6-electrodes configuration and sets 1 and 5 in the 10-electrodes
configuration) also obtained high scores. This spatial pattern
suggests that electrodes positioned in the central frontal region
(e.g., FPz, AFz, Fz) and the right lateral temporal region
(e.g., FC6, C6, CP6, FT8, T8) likely carry critical information
for both speaker identification and the extraction of linguistic
features. These results imply that it is possible to extract both
speaker identification and language information at the same
time with the choice of electrodes.

V. CONCLUSION

The present study indicates that the strategic selection of
electrode sets has the potential to facilitate the extraction of
speaker-specific and linguistic information in a simultaneous
manner. Notably, this study observed a tendency towards nu-
merically improved results for specific electrode configurations
across evaluation metrics such as PER and PSMR. Subsequent
studies will integrate the weighted signal combinations to

further optimize speech production and maintain speaker iden-
tity while enriching the linguistic content of the synthesized
speech. Additionally, since our electrode selection approach
was broadly partitioned across brain regions, developing pre-
cise electrode combination methods remains an important fu-
ture challenge. One limitation of EEG data is its relatively low
spatial resolution; however, improving spatial resolution with
the effect of electrode selection would enable more precise
analysis of localized brain regions. Consequently, we aim to
explore methodologies that integrate strategies for enhancing
EEG spatial resolution with our prevailing Transformer-based
approach.
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