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Abstract—The classification of EEG signals during motor
imagery (MI) tasks is a key element of several brain-computer
interfaces (BCIs), especially those used for motor rehabilitation
of stroke patients. Despite a large body of literature, the clas-
sification of MI EEG signals remains challenging, with deep
learning approaches showing improved performance but only
limited success in real-life applications. This study focuses on two
convolutional neural networks (CNNs) developed for classifying
EEG signals, EEGNet and EDPNet, and aims to investigate
the impact of different aspects of data degradation in real-life
acquisitions on the accuracy of left vs. right MI classification.
For this purpose, we consider a large public dataset with a
well-defined MI task, as well as a private dataset with fewer
trials across different types of MI tasks. We further test the
impact of reducing the number of channels and time samples
used, and compare the performance of subject-specific and group
models. High accuracy was achieved using both CNNs in both
datasets, with slightly better performance for subject-specific
models compared to group models, highlighting high inter-subject
variability. Interestingly, reducing the number of trials in the
public dataset to match those in the private dataset yielded only
a small decrease in performance, consistently with the similar
performance obtained between datasets despite the difference in
the number of trials. Both reducing the number of channels (from
the total of 18 or 32 to only C3, C4 and Cz) and time samples, or
trial duration (from 5.5 to 1.0 seconds) decreased performance,
with the latter producing the greatest degradation. Nevertheless,
even when using only 1.0 seconds of data from C3, C4 and Cz
channels, model accuracy remained always above chance level,
with a median of approximately 0.8 across subjects. In conclusion,
we show that EEGNet and EDPNet are appropriate for MI EEG
BCIs, yielding high left vs. right classification accuracies within
a 1-second interval and with a limited number of channels.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) are technologies that
enable direct communication between the brain and external
devices by bypassing conventional neuromuscular pathways
[1]. Electroencephalography (EEG)-based BCIs offer a cost-
effective, non-invasive approach with high temporal resolution,
making them particularly suitable for applications such as

neurorehabilitation and assistive technologies. Among various
BCI paradigms, Motor Imagery (MI)-based BCIs hold partic-
ular promise, as they allow users to control external devices
by mentally simulating movements without actual muscle
activation [2]. The mental rehearsal movement modulates EEG
signals primarily in the Alpha (8–13 Hz) and Beta (13–30 Hz)
frequency bands. This capability is especially beneficial for
individuals with motor impairments, enabling them to interact
with their environment using brain activity alone [3].

Despite substantial progress in EEG-based BCIs, achieving
high classification accuracy and robustness remains challeng-
ing due to inter-subject variability, signal non-stationarity, and
noise contamination [4]–[6]. Traditionally, MI-BCI classifica-
tion relied on conventional machine learning (ML) techniques,
with Common Spatial Pattern (CSP) and Linear Discriminant
Analysis (LDA) being among the most widely used approaches
[7]. CSP enhances discriminability by computing spatial filters
that maximize variance differences between MI classes, while
LDA provides a computationally efficient linear separation of
features. However, these methods are sensitive to noise and
require extensive feature engineering.

Deep learning (DL) approaches have more recently been
explored for this purpose [8], [9]. In particular, convolutional
neural networks (CNNs) have been proposed that incorporate a
temporal layer before a spatial one, enabling the extraction of
discriminative temporal and spatial EEG features by training
filters specific to each layer. Additionally, CNN models for
EEG classification often include a summarization layer to ef-
ficiently represent information, keeping the model lightweight,
followed by a final classification layer [10]. Although DL
models have shown improved accuracy compared with con-
ventional machine learning, their success in real-life BCI
applications is still limited.

In this study, we focus on two CNNs that have been
successfully employed for the classification of left vs. right
MI from EEG signals, EEGNet [11] and EDPNet [12].
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EEGNet is a well-known and widely reviewed network for
EEG classification, while EDPNet is a new network featuring
an interesting structure with attention mechanisms and dual
prototype learning. Our aim is to investigate the impact of
different aspects of data degradation in real-life acquisitions
on model performance. For this purpose, we consider a large
public dataset with a well-defined MI task, as well as a private
dataset with fewer trials across different types of MI tasks. We
further test the impact of reducing the number of channels and
time samples used, and compare the performance of subject-
specific and group models.

II. METHODS

A. Datasets

1) Public Dataset: The BCI Competition IV dataset 2A
was used, including EEG data recorded from 9 subjects while
performing MI of the left hand, right hand, feet, and tongue
[13]. EEG data were acquired from 20 channels with a
sampling rate of 250 Hz, over a total of 576 MI trials. After
removal of eye movement artifacts, the data were epoched
around the onset of each MI trial, with a trial duration of 4.0
seconds immediately after the cue. Here, we focus only on the
left and right hand MI trials, totaling 288 trials (144 for each
hand / class) and the binary classification of left vs. right hand
MI.

2) Private Dataset: EEG data were collected from 14
healthy participants (7 male, 7 female; mean age: 26 ± 6.25
years) during the execution of an MI grasping task [14]. The
protocol was approved by the Ethics Committee of CHULN
and CAML (Faculty of Medicine, University of Lisbon) and
each participant provided written informed consent. The task
involved imagination of right or left hand grasping over a
total of 120 trials (60 trials per hand / class), across different
conditions (including a VR environment or not). EEG data
were acquired using a wearable wireless amplifier (LiveAmp;
Brain Products GmBH, Germany) with 32 active electrodes at
a sampling rate of 250 Hz. Electrodes were arranged according
to the 10-20 EEG montage. EEG data were epoched around
trial onsets to extract left and right hand MI trials with two
different durations: 5.5 seconds, between 1.5 seconds before
and 4 seconds after stimulus onset; and 1.0 seconds, from half
a second before to half a second after the stimulus onset. The
effect on classification of bandpass filtering the data between
1 and 40 Hz was also investigated. No other preprocessing
was performed.

B. CNN architectures

1) EEGNet: The EEGNet architecture [11] was designed
for EEG-based BCIs, structured in two main blocks. The
first is composed by a temporal 2D convolutional filter that
takes as input the downsampled EEG signal. This filter
returns feature maps representing the EEG signal at different
band-pass frequencies. It is composed also by a spatial
filter, a Depthwise convolution that helps to understand how
the signal varies across EEG channels. A depth parameter
controls the number of spatial filters to learn for each

feature map. After the first block, EEGNet applies Batch
Normalization, followed by the ELU (Exponential Linear
Unit) activation function, average pooling to reduce the
signal dimension, and dropout. The second block consists
of a separable convolution: a Depthwise Convolution that
summarizes the temporal information in the feature maps
to reduce the amount of data in the model. A Pointwise
Convolution with size (1, 1) merges the feature maps obtained
from the previous filter. At this point, Batch Normalization,
activation, average pooling, and dropout are applied again.
Finally, on the newly obtained features, EEGNet uses a
Softmax function to assign a probability score to each feature
for classification.

2) EDPNet: The EDPNET architecture [12] was designed
for EEG MI classification, performing well with small
datasets, low computational cost, and fast training time. EDP-
NET consists of four modules: spatial-spectral embedding,
adaptive spatial-spectral fusion, multi-scale variance pooling,
and dual prototype learning. The first module takes a vector of
size channels * times as input, divides the data into h groups
along the channel dimension and applies a Light Convolution
to extract temporal and spectral features. The adaptive spatial-
spectral fusion module is based on a lightweight attention
mechanism consisting of three parts: global context embed-
ding, channel normalization, and gating adaptation.

A mean-variance operation aggregates temporal information
from each channel, α controls the weight of each channel.
Channel normalization is applied. The attention mechanism,
uses attention weights γ and bias β and it determines which
features are most relevant for each channel. The adaptive
spatial-spectral fusion also employs a pointwise 1D convo-
lution filter of size 1x1 across all channels to extract spatial
features. The multi-scale variance pooling module provides a
more compact representation of the features. It first splits the
input along the first dimension into three groups, applying
variance pooling with three kernel sizes to summarize the
features for each group. The final step of the network is
Dual Prototype Learning (DPL), a technique that builds two
prototypes: the inter-class separation prototype. This prototype
minimizes the distance to the correct class and maximizes
the distance to other classes, thereby increasing the margin
between classes.

C. Model training and validation

For each CNN architecture, dataset, and scenario (described
below), two types of models were trained. Subject-specific
models were obtained by training on all train trials of each
individual subject and testing on test trials. Group models were
obtained by training on all trials of all subjects except one used
for the test, using a leave-one-out scheme.

For each model, the training involves two phases: an initial
phase with a 50/50 training-validation split for N1 epochs us-
ing early stopping after Ne epochs without improvement, and
a second phase training on the combined data for N2 epochs,
following the strategy used by the authors of EDPNet [12]. The
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hyperparameters of the EEGNet and EDPNet architectures and
the respective model training and validation are presented in
Tables I and II.

EEGNet uses a single learning rate and weight decay, as it
does not rely on prototype losses. Its hyperparameters include
the dropout rate to prevent overfitting, and the number of
temporal, spatial, and pointwise filters, as well as the window
lengths for temporal and spatial filters. In the public data
set for individual subject technique, the learning rate used to
train the networks is increased to 0.001.* The private dataset
requires a lower learning rate to achieve good test accuracy
results. Although it contains fewer trials, it provides more
channels, enabling both networks to classify its signals more
effectively compared to the other datasets.

The hyperparameters of EDPNet include the number of
convolutional filters in the first (F1) and second layers (F2),
the temporal filter window size, the pooling window size in
the multi-scale variance pooling module, and the coefficients
α and λ for ISP and ICP prototypes. Three learning rates and
weight decay parameters are used for feature extraction, ICP
prototype learning, and ISP prototype learning.

TABLE I: Hyperparameters used for the public dataset.

EEGNet EDPNet
General Parameters

Dropout rate = 0.2 1st filter F1 = 9
Kernel length = 64 2nd filter F2 = 48
Temporal filters F1 = 8 Time kernel 1 = 75
Spatial filter D = 2 Pool kernels = [50, 100, 200]
Pointwise filters F2 (F1 ∗D)=16 α = 0.00001
Kernel length2 = 16 λ = 0.001

Learning Rates and Decay
Learning rate = 0.0001 * Learning rate = 0.0001 *

Weight decay = 0.01 Weight decay = 0.01
Learning rate ISP = 0.0001
Learning rate ICP = 0.0001
Weight decay ISP = 0
Weight decay ICP = 0

Training Parameters
N1 = 1000 N1 = 1000
Ne = 200 Ne = 200
N2 = 300 N2 = 300
Batch size = 32 Batch size = 32

Validation Parameters
Validation division size = 0.5 Validation division size = 0.5

TABLE II: Hyperparameters changed for the private
dataset.

EEGNet EDPNet
Learning Rates and Decay

Learning rate = 0.0001 Learning rate = 0.0001
Training Parameters

N1 = 300 N1 = 300
Ne = 150 Ne = 150
N2 = 200 N2 = 200
Batch size = 32 Batch size = 32

D. Model scenarios

For each model architecture, the following modeling sce-
narios were considered. In each case, model performance was
assessed as the accuracy of the binary classification between
left and right hand MI trials.

For the public dataset, which contained a larger number
of MI trials (288), we investigated the effect of reducing the
number of trials by considering only a subset of 120 trials
(60 trials per class), to match the number of trials in the
private dataset. This test was important given the typically
low numbers of trials of real-life datasets, which may severely
impair the performance of DL models.

For the private dataset, we investigated the effect of reducing
the number of time samples in each trial used for classification,
by considering a longer trial duration (5.5 seconds) as well
as a shorter trial duration (1.0 seconds). This is particularly
important for real-life neurorehabilitation BCI applications, in
which the timing of the neurofeedback received by the patient
is a critical parameter.

For both the public and private datasets, we investigated the
effect of using only 3 EEG channels close to the motor cortex:
C3, C4 and Cz, where there is strong directional connectivity
from Cz to C3/C4 during left- and right-hand MIs [15]. A
reduced number of channels would be highly beneficial for the
practical implementation of BCIs, since it would considerably
reduced preparation time.

Finally, we also considered a preprocessing the EEG data
with a bandpass filter focused on the frequency bands of inter-
est for MI brain activity, i.e., 8 - 40 Hz. Restricting the EEG
frequencies analyzed may help minimize artifact contributions,
occurring mostly at lower and higher frequencies.

III. RESULTS

A. Model performance in the default scenario

The test accuracies achieved for the subject and group mod-
els, obtained using the EEGNet and EDPNet architectures in
the default scenario are presented in Tables III and IV, for the
public and private datasets, respectively. High accuracy was
achieved using both CNNs in all cases (between 73 and 100%
across all subjects of both datasets). For the public dataset,
EDPNet yielded a higher accuracy than EEGNet in subject-
specific models (92 vs. 85 %). As expected due to the known
inter-subject variability of MI EEG signals, the performance
was lower for group models. However, it was not significantly
different between CNNs in this case (83 vs. 84 %). When
moving to the private dataset, somewhat unexpectedly, we
obtained slightly better performance in general. Group models
performed only slightly worse than subject-specific models,
probably due to the greater number of subjects in this data set
(14 vs. 9). A small improvement was achieved with EDPNet
relative to EEGNet, for both subject models (95 vs. 94 %)
and group models (93 vs. 92 %). The model interpretability
reveals that the temporal filters of both networks exhibit a
sinusoidal weight distribution over time, with key frequencies
in the 4–8 Hz and 14–18 Hz ranges. In contrast, the spatial
patterns are less consistent, as the weight distribution across
channels varies significantly between filters and subjects.
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TABLE III: Model test performance for the public dataset (left vs.
right hand classification): individual subject model (top) and group
model (bottom), in the default scenario, using all trials and channels,
and no bandpass filtering.

Subject EDPNet (%) EEGNet (%)
1 95.83 77.08
2 85.41 77.08
3 97.91 81.94
4 90.97 79.16
5 96.52 88.19
6 77.08 83.33
7 84.72 88.19
8 97.22 88.19
9 95.83 88.88

AVG ± Dev std 91.28 ± 6.89 83.56 ± 4.69

Subject EDPNet (%) EEGNet (%)
1 82.63 74.65
2 76.04 76.73
3 82.98 88.19
4 82.29 78.81
5 84.02 90.62
6 80.55 82.63
7 90.62 93.05
8 91.66 96.18
9 78.12 78.81

AVG ± Dev std 83.21 ± 4.86 84.41 ± 7.34

TABLE IV: Model test performance for the private dataset (left vs.
right hand classification): individual subject model (top) and group
model (bottom), in the default scenario, using all time samples (5.5
seconds trial duration) and channels, and no bandpass filtering.

Subject EDPNet (%) EEGNet (%)
1 93.33 85.0
2 100.0 100.0
3 71.66 71.66
4 98.33 98.33
5 91.66 96.66
6 100.0 98.33
7 100.0 98.33
8 96.66 96.66
9 96.66 93.33

10 90.0 86.66
11 96.66 96.66
12 100.0 100.0
13 100.0 100.0
14 88.33 91.66

AVG ± Dev std 94.52 ± 7.41 93.8 ± 7.67

Subject EDPNet (%) EEGNet (%)
1 86.66 84.16
2 100.0 99.16
3 82.5 84.16
4 99.16 100.0
5 89.76 90.55
6 100.0 100.0
7 97.5 97.5
8 98.31 98.31
9 94.16 90.0

10 82.5 78.33
11 83.33 89.16
12 100.0 100.0
13 98.33 100.0
14 84.16 81.66

AVG ± Dev std 92.60 ± 7.08 92.35 ± 7.58

B. Effect of deteriorating scenarios on model performance

The results of the models obtained considering the sce-
narios corresponding to real-life deteriorating conditions are
presented in Figures 1 and 2, for the public and private
datasets, respectively.

In the public dataset, we verified that reducing the number of
trials by more than one half (from 288 to 120) to match the pri-
vate dataset yielded only a small decrease in performance, no-
ticeable only for EEGNet with all channels. This is consistent
with the high performance obtained with the private dataset,
indicating that the limited number of trials was not detrimental
to model performance in this case. An appreciable impairment
of performance was observed when considering only 3 out of
the total 18 channels, with the accuracy dropping to around 70
and 60 % on average across subjects for the subject and group
models, respectively. This effect was particularly pronounced
in the group models. Interestingly, bandpass filtering produced
only a negligible decrease in accuracy.

In the private dataset, reducing the number of channels
from 32 to 3 impaired performance slightly less than in the
public dataset, while bandpass filtering impaired it negligibly
similarly to the public dataset. The most signifcant impairment
was caused by the reduction in time samples used, with 1.0
sec trials yields significantly lower accuracies than 5.5 sec
trials. Nevertheless, even when using only 1.0 seconds of data
from only C3, C4 and Cz channels, model accuracy remained
always above chance level, with a median of approximately
0.8 across subjects for both EDPNet and EEGNet.

Fig. 1: Model test performance for the public dataset (left vs. right
hand classification): individual subject model (top) and group model
(bottom), in the different scenarios tested.
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Fig. 2: Model test performance for the private dataset (left vs. right
hand classification): individual subject model (top) and group model
(bottom), in the different scenarios tested.

IV. DISCUSSION

In this study, we explored DL models for classifying
MI EEG signals in BCIs to help individuals with motor
disabilities interact with devices through brain signals. This
study evaluated generalization across datasets recorded with
varying criteria using two reviewed architectures, EDPNet
and EEGNet. Both CNNs achieved high accuracy, surpassing
conventional machine learning methods like CSP combined
with LDA. While EDPNet outperformed EEGNet in subject-
specific models of the public dataset, as noted in [12], this
advantage was not observed in the private dataset or group
models in either dataset. Future improvements could involve
Bayesian hyperparameter optimization.

Models trained on individual subjects generally performed
better than those trained on groups, due to significant variabil-
ity in EEG patterns during MI tasks across subjects. However,
this gap was smaller in the private dataset, which had more
subjects, suggesting that accurate group models might be
achievable with sufficiently large cohorts.

Reducing the number of trials by more than one half yielded
only a small if any decrease in performance. This is consistent
with the high performance obtained with the private dataset,
with fewer trials, indicating that this was not detrimental to
model performance in this case.

Bandpass filtering to a specific frequency band did not
notably improve performance, showing that EEGNet and EDP-
Net temporal filters can effectively identify key frequencies
from raw EEG data. However, reducing the number of chan-
nels did affect performance, suggesting these models extract
important spatial information beyond motor cortex areas (C3,

C4, Cz). Notably, shortening EEG segments to 1 second
degraded performance, highlighting the challenge of reducing
feedback delay in MI EEG BCIs.

In conclusion, we show that EEGNet and EDPNet are
appropriate for MI EEG BCIs, yielding high left vs. right
classification accuracies, which are still well above chance
level within a 1-second interval and with a limited number
of channels.

ACKNOWLEDGMENTS

This work is supported by FCT projects LARSyS (DOI:
10.54499/LA/P/0083/2020, 10.54499/UIDP/50009/2020,
and 10.54499/UIDB/50009/2020) and NOISyS (DOI:
10.54499/2022.02283.PTDC), and PRR Center for
Responsible AI (C645008882-00000055).

REFERENCES

[1] G. Pfurtscheller, D. Flotzinger, and J. Kalcher, “Brain-computer inter-
face—a new communication device for handicapped persons,” Journal
of microcomputer applications, vol. 16, no. 3, pp. 293–299, 1993.

[2] A. Vourvopoulos, C. Jorge, R. Abreu, P. Figueiredo, J.-C. Fernandes,
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