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Abstract—The analysis of cortical brain recordings is sig-
nificantly hindered by the presence of artifactual components,
which can severely confound the interpretation of neural sig-
nals. Current methodologies, such as Independent Component
Analysis (ICA), often fail to effectively reject these artifacts,
particularly those originating from cardiovascular activity, with-
out removing neurologically relevant components. This study
introduces an innovative approach for the precise identification
and removal of electrocardiogram (ECG)-derived artifacts from
intracortical electroencephalography (iEEG) recordings. In the
proposed method, the ECG signal serves as a baseline for
iEEG signals, allowing the identification of cardiac artifacts. This
technique ensures the retention of essential neural information,
particularly during critical events, such as R-wave peaks, in brain
activity analysis. The approach was evaluated using a publicly
available dataset of 47 patients with simultaneous iEEG and ECG
recordings suffering medication-resistant epilepsy. Experimental
results reveal that our method significantly reduced the amplitude
of R-peak artifacts in 85% of the recordings compared to the
traditional ICA-based approach, while preserving the integrity
of the underlying neural signals. Furthermore, the application of
our method resulted in enhanced detection and characterization
of heartbeat-evoked potentials (HEP), demonstrating its efficacy
in maintaining the fidelity of brain signal interpretation. This
study provides a robust tool for iEEG signals preprocessing from
cardiac artifacts, allowing for an unbiased iEEG analysis, and
effective iIEEG-ECG brain-heart interplay studies.

Index Terms—iEEG, ECG, EEG preprocessing, ICA

I. INTRODUCTION

The study of human brain dynamics requires both high
spatial and temporal resolutions, yet traditional acquisition
methodologies often present substantial limitations. Human in-
tracranial electroencephalography (iEEG) is widely recognized
as the optimal solution, providing superior temporal resolution,
minimal localization error, reduced susceptibility to artifacts,
and an excellent signal-to-noise ratio. Due to its invasive na-
ture, iIEEG recordings are typically acquired from a very lim-
ited number of patients suffering of specific pathologic condi-
tions, such as severe epilepsy, and iEEG recordings are needed
to determine candidacy for surgical intervention [1]. Several
types of intracranial electrodes have been developed for var-
ious research and clinical applications [2]. IEEG data can be
collected from patients who are implanted subdurally with
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electrode grids (Electrocorticography, ECoG), and/or depth
electrodes (stereo-electroencephalography, sEEG). ECoG uti-
lizes grid arrays placed directly on the brain’s surface, by-
passing the filtering effects of the scalp and skull. Probes
used in sEEG record activity from deep brain structures at
precise locations within brain tissue and are used for deep-
brain stimulation. Electrophysiological recordings of brain
activity are often contaminated by artifacts, as any undesired
signal corrupting the underlying neural dynamics [2]. Common
physiological artifacts include eye movements, muscle activity,
and cardiac activity, and are extensively documented in the
literature [3]-[6]. These artifacts are nearly unavoidable and
can severely distort recorded signals, potentially affecting the
effectiveness of the analysis. Raw signals are therefore rou-
tinely preprocessed using various techniques, including filter-
ing to remove line noise and other frequency-specific artifacts,
and outliers rejection to eliminate large amplitude fluctuations
caused by movement or electrode displacement. Since iEEG
electrodes are placed directly within the brain, they are less
susceptible to the influence of artifacts originating outside the
skull, and external artifacts are generally minimized in iEEG
recordings. However, the influence of ECG-related artifacts
remains present. Nevertheless, cardiac activity per se elicits a
neural response in the brain, reflecting interoceptive processing
at both sensory and perceptual levels, such as the perception of
heartbeats [7], and regulation of cardiac output and autonomic
processes [8]. The most direct representation of brain pro-
cessing of cardiac activity are the heartbeat-evoked potentials
(HEP). In the most diffused EEG-based implementations, HEP
are computed by averaging EEG signals time-locked to the R-
peaks detected by the electrocardiogram (ECG) trace. Early
studies observed HEP primarily over fronto-central regions
within a [200, 500]ms time window after the R-peak in the
ECG signal [7]. This specific time window post R-peak,
particularly localized at medial-right fronto-central sites, has
been frequently interpreted as reflecting the central nervous
system (CNS) representation of somatosensory information
processing related to cardiac interoceptive accuracy [9]. Later
components of the HEP, occurring around [400,600/ms post
R-peak, have been linked to various cognitive and emotional
processes [8], [10]. ECG artifacts overlap with the time
window of interest for HEP, impeding the identification of
actual neural responses to the heartbeat, or potentially cause
misleading interpretation [11]. To tackle this issue, common
approaches in EEG analysis include decomposing the original

EUSIPCO 2025



signals through Independent Component Analysis (ICA), and
subsequently identify and reject artifact-related components
[12]-[14]. However, ICA can remove task-relevant signals
[15]. To our knowledge, a high-performance artifact removal
method specifically tailored for iEEG signals has not been
proposed yet. To overcome this limitation, we propose a novel
approach that exploits ECG signals as an internal reference to
clean and assess intracortical brain recordings. This model was
evaluated using a publicly available experimental iIEEG dataset
recorded during resting state.

II. MATERIALS AND METHODS

In this study, a novel technique for removing ECG artifacts
from iEEG recordings has been developed and evaluated
compared to a widely used approach based on ICA.

A. Experimental Dataset

The experimental dataset included iEEG and ECG signals
from 47 subjects (17 females; 26 years old on average, with
standard deviation of 15 years) [16]. Of the entire cohort, 31
patients were implanted with subdural ECoG grids, 5 patients
underwent iEEG electrode implantation, and 11 patients were
implanted with both subdural ECoG grids and iEEG elec-
trodes. Signals were originally recorded at different sampling
frequencies, i.e., 2048H z, 2000H z, or 512H z. All patients
had medication-resistant epilepsy and underwent resting state
(RS) recording, remaining silent with eyes open for up to
3 minutes. They provided signed informed consent for in-
tracranial electrode implantation and public sharing of de-
identified data for research purposes. The study was approved
by the Medical Ethical Committee of the University Medical
Center of Utrecht, Netherlands, in accordance with the Dec-
laration of Helsinki (2013). The dataset is freely available at
openneuro.org/datasets/ds003688. Further details
about data acquisition can be found in [16].

B. ECG and iEEG Data Preprocessing

Signals were uniformly re-sampled at 256H z for further
analysis. A basic and widely used preprocessing pipeline for
iEEG signals was implemented to discard generic electrical
and noise artifacts [17]. This pipeline included: a 50H z
notch filter to remove line noise; applying a [0.3,70]Hz
band pass filter; and identifying and rejecting channels based
on outlier kurtosis and skewness values. ECG signals were
band-pass filtered at [0.3,25]H z. R-peaks were then detected
using the well-known Pan-Tompkins algorithm. To facilitate
comparisons between subjects, the locations of the intracranial
electrodes were transformed into the Montreal Neurological
Institute (MNI) space using the FieldTrip toolbox [18]. After
preprocessing, five subjects were rejected due to bad electrode
location conversion, while one subject was rejected due to poor
ECG channel acquisition, leading to a final total of 41 subjects’
recordings.
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Fig. 1. Graphical representation of the implemented analysis pipeline

C. ICA-Based Approach:

The classic ICA-based approach decomposes the iEEG
signals into independent components and identifies and rejects
the ICs most correlated with ECG trace. Exemplary, for each
IC, the linear Pearson’s correlation coefficient (R) with the
original ECG signal can be calculated. To ensure the effective
representation of ECG artifacts without loss of informative
content, the most correlated components are identified, and
if statistically significant and having R > 0.1, they are
rejected. Further artifactual ICs are identified and rejected as
belonging to the 5% external tail of the distributions based on
their standard deviation and kurtosis values. Finally, for each
channel, signal epochs S7., 4 (t) were extracted time-locked to
the R-peaks (i.e., from —200ms before the R-peak, to +-800ms
after), where the index j runs over the R-peaks.

D. Proposed Method

The influence of heart activity on the brain is proposed
as a combination of the |[ECG(¢)| trace modulated by the
amplitude of the synchronous iEEG(t) signal. The analysis
is carried out extracting epochs time-locked to the R-peaks in
the time-window A = [—200, +800]ms for all iEEG channels
and the ECG continuous series. Thus, ECG epochs (denoted as
AECGI(t)) and iEEG epochs (denoted as AiEEGY (t)) were
obtained. The segmented ECG signal is normalized within
each epoch by scaling the signal to the range [0, 1] as:

¢i(t) = |AECGY (t) /maz|AECGI(B)])]. (1)

The signal £7(t) serves as a mask window to suppress the
QRST-complex whose electrical reverberation on the brain is
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Fig. 2. Epoch traces for distinct ECG artifact removal methods: This Figure displays the time series of the electrode signal after processing with different
methods across various electrodes. The black dotted traces represent the original average epoch without any preprocessing algorithm applied. The blue trace
represents the signal after applying the ICA-based method, while the orange trace represents the signal processed using the novel proposed method (PM).
Panel (a) shows channel *CPO1’ from subject 16, located in the Left Occipital Medial Cortex. Panel (b) features channel *T08’ from subject 46, located in
the Left Temporal Inferior Cortex. Panel (c) displays channel *T06’ from subject 49 in the Left Rolandic Operculum. Panels (d) and (g) respectively present
channels ’AHR1’ and "AHR3’ from subject 1, located in the Right Parahippocampal Cortex. Finally, panels (f), (h), and (i) respectively show channels "F09’,
’C14’, and 'FHO3’ of subject 43, which are located in the Right Frontal Superior Orbital Cortex, Right Postcentral Cortex, and the Right Frontal Superior
Cortex. Panel (e) illustrates the spatial location of the channels in the standardized MNI brain volume.

assumed to directly affect the iEEG signal recordings. It is
used as a baseline for re-referencing each AiEEGY (t) within
the same time window:

St (t) = MEEG (1)(1 - & (1)) 2

E. HEP Definition and Comparison

After ECG artifact identification and rejection algorithm,
the obtained epochs (i.e., S7(t), where 7 depends on the
algorithm employed, and j refers to R-peak locked epoch)
were processed to identify proper heartbeat evoked potential
(HEP). Firstly, outlier epochs were identified: the 15¢ quartile
q1(t), and the 3"% quartile g3(t) were determined at each
time sample; trials falling outside the time-varying acceptance
range 3[5q1 — 3¢s,5q3 — 3q1](t) for more than 10% of the
length were excluded from further analysis [19]. Then, each
epoch underwent baseline correction by subtracting the mean
value within the pre-stimulus window of [—150, —50]ms, and
a representative mean signal epoch was estimated (.S;(¢)) for
each channel. The standard deviation (o) for each channel was
calculated within a pre-stimulus window of [—150, —50]ms.

Finally, the signal was smoothed using a 25ms moving av-
erage time window. The maximum within the post-stimulus
window [150,450]ms was identified, and peaks exceeding a
50 threshold were classified as significant HEP. It must be
noted that the two different ECG artifact identification and
rejection algorithms lead to different series, which may or may
not succeed to be classified as significant HEP. Thus meaning
that the two different algorithms may lead to different number
of HEP for the same subject. To further allow for a subject-
wise meaningful evaluation of obtained HEP, we employed a
standard brain partition into a number of region of interest
(ROI) defined according to anatomical and functional criteria.
Specifically, we used the automated anatomical labeling atlas
(AAL), which identifies a total of 95 brain ROIs [20], and
averaged across the different channels of different subjects
located into each single ROI, thus obtaining ROI-specific HEP.

ITII. RESULTS

Figure 2 illustrates the effect of two artifact rejection meth-
ods on randomly chosen iEEG channel recordings for eight
distinct channels from different subjects. This visualization
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Fig. 3. The amplitude of epoch signals coincident with the R-peak is estimated
for two methods and normalized relative to the amplitude of the original signal
at the same time. These amplitudes are compared in a scatter plot where the
z-axis refers to the PM and the y-axis represents the ICA-based approach. A
red line spans the plot along the x = y diagonal, indicating equal performance
by both methods. Each dot represents an electrode from a subset of subjects
(i.e., sbj-1, sbj-16, sbj-43, sbj-48, sbj-49).

is chosen to show the raw effect of this application without
group-averaging. It is important to note that the dataset is
characterized by subject-specific electrode locations due to
personalized clinical requirements. The central panel (e) shows
the spatial location of the analyzed electrodes with their labels,
within the standardized MNI brain volume. The selected
channels represent a diverse set of locations across the cortex,
chosen to illustrate the range of observed responses. Each
panel displays the original average epoch of the electrode
(black dotted trace) and the epoch after processing with two
different methods. The blue trace represents the signal after
applying the ICA-based method. The orange trace represents
the signal processed using the PM method. The PM method
generally better attenuates the R-peak artifact compared to
the ICA-based method. Furthermore, the two methods exhibit
distinct effects on the post-stimulus time window, as illustrated
in Figure 2, panels (c), (d), and (g). Panels (a), (f), and (i) show
a case with the presence of HEP in the post-stimulus time
interval [150,400]ms. The positive peak, typically occurring
around 300ms after the R-peak of the ECG, shows the brain’s
reaction to the heartbeat. In the other panels, the epoch traces
do not show the typical evoked potential; here, the signal is
flatter and noisier. To further evaluate how HEP are affected
by each method, the PM and the ICA-based amplitudes were
measured and normalized dividing by the corresponding am-
plitude of the original trace, i.e., HEP epochs derived without
any specific ECG artifact preprocessing. Figure 3 presents a
scatter plot of the normalized amplitudes, with the PM values
plotted on the x—axis and the ICA-based values on the y—axis.
Each blue dot represents a single channel from a given subject.
Figure 3 reveals a denser concentration of channels along
the ICA-based axis, indicating that the ICA-based values are
much more distributed with respect to the PM, revealing a
higher dependence of ICA-based values from the R-peak of
the ECG. Across all subjects, the ICA-based approach yielded

a higher amplitude peak in 85% of the data compared to the
PM. The impact of the different data processing methods was
also evident at the ROI level. Following the HEP identification
procedure described in Section II-E, the number of identified
HEP varied depending on the ECG artifact removal algorithm
employed. Therefore, for each ROI, the difference in the
number of HEP between the two methods was calculated and
normalized by the total number of channels within that ROI.
Figure 4 show the results for all the ensemble of subjects
grouped by ROIs. Panel (a), reports the number of significant
HEP that have been detected by the two approaches when
they were at least 5 per ROI, panel (b), displays the ROIs
where the normalized difference exceeded 5%. Five ROIs were
identified, and the associated HEP are shown in Figure 4,
panels (c-g). Orange traces represent the PM approach, while
blue lines depict the ICA-based method.

IV. DISCUSSION AND CONCLUSION

This study introduces a novel technique for removing ECG
artifacts from iEEG recordings, thereby mitigating their influ-
ence on the analysis of brain dynamics. This preliminary inves-
tigation focuses on resting-state data from a publicly available
dataset that includes patients with ECoG and/or iEEG elec-
trode channels, and concurrent ECG recordings. The proposed
method normalizes iEEG channel traces for each epoch using
the ECG trace, as illustrated in 1 and 2. Its performance was
compared to an ICA-based approach involving iEEG signal
decomposition and subsequent rejection of components highly
correlated with the ECG signal, a common practice in EEG
literature. Comparison of the two approaches revealed notable
differences. PM generally demonstrated greater reliability in
reducing R-peak amplitude and exhibited less dependence on
ECG amplitude at the R-peaks, as shown in Figure 2, while
the ICA-based approach may fail effectively removing the
prominent R-peak component of the ECG artifact in several
cases. Specifically, in Figure 3 PM method exhibits a denser,
more concentrated channel distribution, suggesting its values
are less dependent on the ECG’s R-peak and potentially
offer a more stable representation. The use of different data
preprocessing pipelines also affects the identification of HEPs.
Figure 4 shows how the number of identified HEP exceeded
5% in favor of the PM approach in 5 ROIs of the cohort it
was analyzed (26 ROIs where there were at least 5 HEPs).
The performance of the proposed model may be susceptible
to inter-subject variability arising from different recording
settings and individual anatomical variations (e.g., skin con-
ductivity, poor ECG signal quality), and further refinement and
validation across diverse datasets and pathological conditions
are needed. It is author’s belief that particular attention should
be paid to analyze the effects of ECG artifacts rejection
algorithms on brain recordings and particularly HEP analysis.
The reported results are promising and normalizing the ECG
trace for each epoch seems to help mitigate the artifacts prop-
agation. We conclude that the proposed approach represents
a promising tool for leveraging the fundamental information
carried by iEEG recordings.
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Fig. 4. Panel (a) show the number of HEP that have been detected by the two approaches when they were at least 5 per ROL Panel (b) depicts the difference
in the number of HEP between the two methods, normalized by the total number of channels within each ROIL. Only the ROIs where the relative difference
exceeds 5% are shown. Panels (c-g) display the median trace for each ROI and the median absolute deviation (MAD) as shaded area. PM traces are depicted

in orange, while ICA-based ones in blue.
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