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Abstract—Deep learning models have shown strong perfor-
mance in classifying Alzheimer’s disease (AD) from R2* maps,
but their decision-making remains opaque, raising concerns
about interpretability. Previous studies suggest biases in model
decisions, necessitating further analysis. This study uses Layer-
wise Relevance Propagation (LRP) and spectral clustering to
explore classifier decision strategies across preprocessing and
training configurations using R2* maps. We trained a 3D
convolutional neural network on R2* maps, generating relevance
heatmaps via LRP and applied spectral clustering to identify
dominant patterns. t-Stochastic Neighbor Embedding (t-SNE)
visualization was used to assess clustering structure. Spectral
clustering revealed distinct decision patterns, with the relevance-
guided model showing the clearest separation between AD and
normal control (NC) cases. The t-SNE visualization confirmed
that this model aligned heatmap groupings with the underlying
subject groups. Our findings highlight the significant impact
of preprocessing and training choices on deep learning models
trained on R2* maps, even with similar performance metrics.
Spectral clustering offers a structured method to identify clas-
sification strategy differences, emphasizing the importance of
explainability in medical AI.

Index Terms—mri, alzheimer’s disease, heatmapping, spectral
clustering, chemical validation

I. INTRODUCTION

Deep neural networks have demonstrated strong perfor-
mance in Alzheimer’s disease (AD) classification using mag-
netic resonance imaging (MRI) [1], but their decision-making
processes remain largely opaque [2]. Ensuring that spurious
data artifacts do not drive model accuracy is crucial for
medical applications. While explainability methods such as
Integrated Gradients [3], LIME [4], and Layer-wise Relevance
Propagation (LRP) [5] have been used to highlight relevant
regions in MRI-based classification, it remains unclear whether
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these networks primarily rely on disease-related biomarkers or
unintended image characteristics [6].

In this work, we utilized the effective relaxation rate R2*
as a quantitative MRI parameter for AD classification with
a relevance-regularized convolutional neural network (CNN).
R2* is defined as the inverse of the effective transverse
relaxation time T2* (R2*=1/T2*), which reflects the decay
of transverse magnetization in each voxel. Notably, R2* is
highly correlated with iron concentration in gray matter [7],
and increased iron levels in the basal ganglia are frequently
observed in AD [8]. We hypothesize that CNNs implicitly
learn such patterns and, with recent advances in explainability,
we can now disentangle and visualize these learned features.

By applying Spectral Relevance Analysis (SpRAy) [9] to
LRP-based heatmaps, we systematically investigate the spatial
clustering of relevance in a deep learning model trained on
R2* maps. This approach allows us to identify dominant
feature clusters that drive classification decisions and assess
their consistency across preprocessing variations. Our findings
provide deeper insights into how CNNs utilize structural brain
information, further refining the understanding of preprocess-
ing influences and potential biases in deep learning-driven AD
classification.

II. METHODS

A. Dataset

We retrospectively selected 226 MRI datasets from 117
patients with probable AD (mean age=71.1±8.2 years,
male/female=93/133) from our outpatient clinic and 226
MRIs from 219 propensity-logit-matched (covariates: age,
sex) [10], [11] normal controls (NCs) (mean age=69.6±9.3
years, m/f=101/125) from an ongoing community-dwelling
study. MRI data were acquired longitudinally over multiple
sessions using a consistent MRI protocol at 3 Tesla (Siemens
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TimTrio), including a structural T1-weighted MPRAGE se-
quence with 1mm isotropic resolution (TR/TE/TI/FA = 1900
ms/2.19 ms/900 ms/9°, matrix = 176×224×256) and a spoiled
FLASH sequence (0.9 × 0.9 × 2mm³, TR/TE=35/4.92ms, 6
echoes, 4.92ms echo spacing, matrix = 208× 256× 64× 6).

B. Preprocessing

Brain masks for each subject were obtained using FSL-
SIENAX [12], and the structural T1-weighted image, and were
subsequently used to perform skull-stripping. Using the data
acquired from the spoiled FLASH sequence, we solved the
inverse problem given as

Sxy[i] = Sxy[0]e
−t[i]R∗

2 , (1)

for Sxy[0] and R∗
2, where Sxy[i] the measured voxel signal

intensity at echo i with echo time t[i]. The computations were
executed for all voxels in the image volumes, yielding the
R2* maps (matrix = 208×256×64). The obtained R2* maps
were affinely registered to the subject’s MPRAGE sequence
using FSL-flirt and subsequently nonlinearly registered to the
MNI152 standard-space brain template using FSL-fnirt.

C. Classifier Network and Training

We employed a 3D subject-level classifier network based
on [1], reducing the number and size of convolutional and
fully connected layers to mitigate overfitting while maintaining
validation accuracy. Batch normalization had no impact and
was omitted, while max pooling was replaced with strided
convolutions for improved interpretability [13], [14]. To en-
hance sparsity, all biases were constrained to be negative [14].

The final architecture consists of four blocks, each con-
taining a 3 × 3 × 3 convolutional layer (8 channels) and a
down-convolutional layer (strided 2). This is followed by two
fully connected layers (16 and 2 units, respectively), totaling
0.3 million trainable parameters. ReLU activations were used
throughout, except for the Softmax output layer.

To focus the network on relevant features, we implemented
a relevance-guided architecture, Graz+, which extends the
classifier with a relevance map generator. This approach in-
corporates an additional loss term that encourages the model
to assign higher relevance to predefined focus regions while
suppressing irrelevant areas. The binary attention masks used
for this guidance were derived from the FSL-SIENAX brain
masks during preprocessing. Full methodological details can
be found in [6].

We trained models on R2* maps in subject space using
the Adam optimizer [15] for 60 epochs with a batch size of 6.
Data was split into training, validation, and test sets (70:15:15)
while ensuring that all scans from the same subject remained
in the same set. To maintain class balance, final sets were
constructed by combining subsets from each cohort, and the
process was repeated 10 times for random sampling analysis
[16]. The learning rate was initially set to 10−3, reduced
by 0.3 after five consecutive epochs without validation loss
improvement, and had a lower bound of 10−6. Model weights
were reset to their state at the start of a plateau phase.

D. Model Configurations

We evaluated three model configurations to assess the
impact of skull-stripping and relevance-guided training [6] on
classification performance. This design enabled us to isolate
the effects of each component and analyze the learned features
using heatmapping.

E. Heatmapping

Heatmaps were created using the LRP method with α = 1.0
and β = 0.0, as described in [5]. Each voxel is attributed a
relevance score (R). To analyze the relevance heatmaps, we
grouped them and calculated mean heatmaps for each group.

F. Spectral Relevance Analysis

Spectral relevance analysis (SpRAy) enables efficient explo-
ration of classifier behavior across large datasets by applying
spectral clustering to inputs and heatmaps. This technique
identifies common and atypical decision-making patterns,
highlighting image features that may or may not reflect
clinically relevant concepts. SpRAy is helpful in uncovering
unexpected or artifact-driven classifier behaviors, similar to the
”Clever Hans” effects found in [9], [17].

The SpRAy process implemented for this study involves six
steps:

1) Compute relevance maps using LRP to identify focus
areas for classification.

2) Warp the heatmaps to MNI152 image space.
3) Downsample the native and warped heatmaps to 2 mm

isotropic resolution for efficient analysis.
4) Perform spectral clustering to group similar image- or

relevance patterns.
5) Identify clusters with highest eigenvalue gap, indicating

well-separated heatmap groups and computing mean
heatmaps for groups.

6) Visualize the clusters using t-Stochastic Neighbor Em-
bedding (t-SNE) [18], which aids in interpreting the
results and understanding the relationship between clus-
ters.

III. RESULTS

Table I summarizes the performance metrics (accuracy,
sensitivity, specificity, and AUC) for all configurations in the
random sampling setup, evaluated in nonexcluded training
sessions. Model A uses native R2* maps, Model B applies the
brain mask to R2* maps for skull-stripping before classifica-
tion, and Model C combines native R2* maps and relevance-
guided training with brain masks.

We visualized the clustering of the heatmaps in native sub-
ject space and in MNI152 space using t-SNE, initialized with
the normalized, symmetric, and positive semi-definite Lapla-
cian matrix derived from the spectral clustering affinity matrix.
Fig. 1 illustrates the grouping of heatmaps and corresponding
warped heatmaps for all models. Group mean heatmaps, based
on spectral clustering groupings, are presented in Fig. 2.
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TABLE I
PERFORMANCE METRICS FOR ALL MODEL CONFIGURATIONS ON THE AD VS NC CLASSIFICATION TASK. MODELS ARE IDENTIFIED BY ID, WITH
COLUMNS INDICATING USE OF SKULL-STRIPPING AND RELEVANCE-GUIDED TRAINING. BRACKETS [ ] SHOW 95% CONFIDENCE INTERVALS. NC:

NORMAL CONTROL; AD: ALZHEIMER’S DISEASE; AUC: AREA UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE

Id Skull-stripping Relevance-guided Accuracy Sensitivity Specificity AUC

A No No 64.2±6.5%
[53.5%, 76.9%]

61.3±9.6%
[39.5%, 74.7%]

67.0±9.4%
[51.2%, 83.7%]

64.12±0.06
[0.53, 0.77]

B Yes No 77.0±5.8%
[64.9%, 85.7%]

75.1±7.8%
[62.2%, 86.4%]

78.8±7.9%
[62.9%, 90.1%]

76.94±0.06
[0.65, 0.85]

C No Yes 75.9±5.1%
[67.9%, 85.8%]

69.7±9.7%
[52.9%, 86.5%]

81.6±5.5%
[72.2%, 92.3%]

75.64±0.05
[0.68, 0.86]

Fig. 1. t-SNE visualization of relevance heatmaps (row 1) and warped heatmaps (row 2) for models trained on native R2* maps (A), skull-stripped R2*
maps (B), and with relevance-guided training (C). Spectral clustering was used to group the heatmaps, with the number of clusters determined by eigenvalue
analysis. Points indicate individual heatmaps and are colored by classification outcome (TN, FN, TP, FP). Only the warped heatmaps from model C show
clustering that aligns with subject groups (NC vs. AD), indicating spatially distinct feature patterns. NC = normal control; AD = Alzheimer’s disease; TN =
true negative; FN = false negative; TP = true positive; FP = false positive

IV. DISCUSSION

Our study extends previous research on the interpretability
of deep learning models for AD classification using R2*
maps. Earlier analyses [19] showed that CNNs primarily focus
on relaxation rate changes in the basal ganglia. Here, we
advance this understanding by applying spectral clustering to
LRP-derived heatmaps, enabling a more structured assessment
of decision patterns and uncovering systematic classification
strategies beyond single-instance explanations.

The t-SNE visualization in Fig. 1 shows that heatmap warp-

ing before spectral clustering influences the grouping (row 1
vs. row 2). Notably, only model C, which applies relevance-
guided training and warping, exhibited heatmap clustering
aligning with subject groups (NC vs. AD). This suggests that
models trained without explicit spatial constraints (models A
and B) may rely on less structured features, while relevance-
guided training helps capture more biologically meaningful
patterns.

Mean heatmaps in Fig. 2, derived from spectral clustering
groupings, reveal consistent relevance patterns that offer in-
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Fig. 2. Mean heatmaps for the groups identified using spectral clustering and eigenvalue analysis for models B and C. Model C shows a clear separation for
warped heatmaps between Group 1 (row 5, all heatmaps are from AD) and Group 2 (row 6, most heatmaps are from NC). Model C highlights the left and
the right basal ganglia, suggesting a more structured relevance pattern compared to Model B. Images are shown in standard-radiological view, causing the
left and right side of the brain to be flipped.
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sight into the classifier’s decision strategies for models B and
C. In the best-performing model (model C), which applies the
relevance-guided approach, the separation between AD and
NC predictions is more pronounced compared to models A and
B. The mean warped heatmap for Group 1 (all AD) in model
C shows greater relevance in the right basal ganglia, while
the Group 2 (mostly NC) heatmap attributes equal relevance
to both the left and right basal ganglia. This suggests that
the relevance-guided approach enhances the model’s ability to
focus on meaningful features, providing a more interpretable
decision strategy. Interestingly, Group 3 also highlights the left
basal ganglia and surrounding tissue, but the group contains
heatmaps from both NC and AD subjects, potentially reflecting
structural differences and nonlinear registration. This shows
the need for further exploration of these learned representa-
tions. In contrast, model B’s heatmaps in native space show
more reliance on brain masks and volume influences, with
varying highlighted regions. After warping to the MNI152
space, these groups merge, emphasizing that postprocessing
may obscure position-driven features.

The absence of significant performance differences between
models B and C indicates that classification accuracy alone is
insufficient to assess model robustness. Despite comparable
performances across models, spectral clustering revealed dis-
tinct decision patterns, highlighting the importance of explain-
ability techniques for evaluating model reliability. Importantly,
our findings emphasize that seemingly minor training choices
-such as skull-stripping or relevance-guided regularization- can
substantially impact learned representations.

V. CONCLUSION

This study utilized quantitative MRI data (R2*) for deep
learning classification and layer-wise relevance propagation
(LRP) in a clinical cohort of Alzheimer’s disease patients.
By extending our previous research on heatmapping validation
[19] by integrating chemical [20] and in-vivo [7] iron mapping
studies, our findings confirm that heatmapping approaches can
serve as valuable tools to identify areas of tissue changes and
provide deeper insights into the internal mechanisms of deep
learning-based classification networks. Spectral clustering ap-
plied to LRP-based heatmaps allowed us to evaluate classifier
decision strategies systematically. Future studies are needed
to further explore the influence of preprocessing artifacts on
model decisions.
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