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Abstract—Multilayer graphs are an emerging tool in connec-
tomics and graph theory, offering a powerful framework to inte-
grate and analyze multiple data modalities. By representing each
modality as a separate layer with interconnecting edges, Multi-
layer graphs capture complex relationships that are often missed
in classical unimodal graph analyses. This ability to combine
complementary information is particularly valuable in clinical
neuroscience, where both functional and structural connectivity
provide distinct but related insights into pathophysiology. In
this study, we present a novel Multilayer graphs framework
to integrate functional MRI and diffusion MRI data for the
classification of patients with Alzheimer’s disease, mild cognitive
impairment, and healthy controls using the Alzheimer’s Disease
Neuroimaging Initiative database. The novelty of our approach
lies in assigning distinct weights to structural and functional
layers, optimizing their respective contributions to classification.
Results show that our Multilayer graphs framework improves
classification accuracy while uncovering key brain regions and
subnetworks. This work underscores the potential of multilayer
graphs to provide a more comprehensive understanding of how
Alzheimer’s disease alters brain connectivity, and to enhance the
detection of neurodegenerative disorders.

Index Terms—Multilayer Graphs, Functional Connectivity,
Structural Connectivity, Alzheimer’s Disease

I. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by a progressive cognitive decline, finally re-
sulting in a loss of functional independence. Before the loss
of independence, patients show impairments across several
cognitive domains, most often including memory loss, a
transitional stage coined "Mild Cognitive Impairment” (MCI)
[1]. Neuroimaging studies using functional MRI (fMRI) and
diffusion MRI (dMRI) have provided critical insights into
the structural and functional brain alterations associated with
AD [2], [3]. fMRI studies reveal disrupted functional con-
nectivity, particularly in the default mode network (DMN),
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which is crucial for memory and self-referential processes [4].
dMRI, on the other hand, captures microstructural changes
in white matter fibers, showing reduced fractional anisotropy
and increased mean diffusivity in regions vulnerable to AD
pathology, such as the medial temporal lobes (MTL) and the
posterior cingulate cortex (PCC) [5], [6].

Graph theory has emerged as a powerful tool for modeling
these interactions by representing the brain as a network where
nodes correspond to brain regions and edges signify their
connectivity [7]. Structural connectivity (SC) derived from
dMRI reflects the physical white matter pathways linking
brain regions, while functional connectivity (FC) obtained
from resting-state fMRI (rs-fMRI) captures the statistical de-
pendencies between neuronal activity across different brain
areas [8]. Although these modalities provide complementary
perspectives, most previous studies have relied on single-
layer graphs representing SC or FC, which fail to capture the
integrative nature of brain organization [9].

To better understand changes in connectivity related to
AD, advanced analytical frameworks are needed to integrate
both structural and functional alterations. Recent advances in
Multilayer Graphs (MG) theory offer an innovative framework
for modeling and analyzing complex, multimodal data [10].
MG extend traditional graph representations by integrating
multiple interconnected layers, each representing a different
data modality. This structure allows the preservation of within-
modality relationships while simultaneously capturing inter-
modality interactions. This approach is particularly relevant in
the study of neurodegenerative diseases, where the interplay
between structural damage and functional disruption could
underlie disease progression, as suggested in [11].

Recent MG studies have shown that AD is associated
with loss of centrality in the hippocampus and posterior
DMN regions [12], as well as with loss of inter-frequency
centrality in the PCC [13]. Despite the growing interest in
MG, their application to classify neurodegenerative conditions
remains unexplored. Existing literature predominantly focuses
on unimodal analyses or simple combinations of features
without explicitly modeling interdependencies [14], [15]. This
gap highlights the need for advanced analytical frameworks
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capable of integrating SC and FC to improve classification
accuracy, better discriminate between different stages of the
disease (i.e. MCI or full-blown AD with loss of independence)
and provide new insights into the underlying pathophysiology.
In this study, we present a novel MG framework that
integrates rs-fMRI and dMRI data to classify AD, MCI, and
healthy controls (HC). Our approach assigns different coeffi-
cients to SC and FC layers, optimizing their contribution to
classification using a simplicial homology global optimisation
(SHGO) algorithm [16]. These coefficients act as weighting
factors, allowing the MG to balance the complementary infor-
mation but distinct nature of SC and FC [9]. By optimizing
these weights, we ensure that both modalities contribute ef-
fectively to classification, rather than being treated as equally
important a priori. Furthermore, we leverage MG metrics such
as overlapping strength and multiplex participation coefficient
to capture the topological differences between groups [17].

II. MATERIAL
A. The dataset

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database'. This cohort includes 42 HC, 34 MCI and 37 AD
patients. The three groups were matched for sex (pairwise chi-
squared test, p > 0.5), age (pairwise t-test, p > 0.1) and
years of education (pairwise t-test, p > 0.1). Additionally, only
amyloid-S positive MCI participants, as assessed through PET
imaging [18], were included. Due to the well-acknowledged
heterogeneity of MCI, this was aimed to increase the like-
lihood that AD is the underlying pathology responsible for
cognitive decline [19]. For each participant, three brain MRI
sequences were acquired: structural MRI, dMRI and rs-fMRIL

B. Preprocessing

The preprocessing of the images was carried out mainly
using the open source medical image processing toolbox
Anima® and the FMRIB Software Library (FSL) [20]. The
structural MRI preprocessing pipeline contains skull-stripping
and brain tissue segmentation of cerebrospinal fluid, white-
matter and gray-matter using FSL’s fast. The dMRI images
were corrected for eddy currents, motion and distortion cor-
rection using the FSL’s function eddy. The corresponding
fieldmap was estimated either using two echo-planar images
with opposing phase-encoding directions processed with FSL’s
topup or using fieldmap images if they were obtained during
the acquisition phase. The images were then denoised using
the NL-Means method [21] and skull stripped using the brain
mask of the structural MRI. The dMRI images were then
used to estimate the response function with the Dhollander
method [22], followed by fiber orientation distribution (FOD)
estimation with the MSMT-CSD approach [23] to model white
matter, gray matter, and cerebrospinal fluid. Subsequently,
tractography was performed using the iFOD2 algorithm [24]

ladni.loni.usc.edu
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to generate 10 million streamlines, which were then filtered
using the SIFT2 method [25] for tractogram refinement. The
rs-fMRI images were motion and slice-time corrected using
FSL’s mcflirt and FSL’s slicetimer. The images were corrected
for distorsion using FSL’s fugue and the same fieldmap as for
dMRI images. Finally, the Schaefer atlas [26], which includes
400 cortical regions, and the Melbourne Subcortex atlas [27],
which consists of 16 subcortical regions, were used for both
dMRI and rs-fMRI to define regions of interest (ROIs). Based
on these 416 ROIs, SC and FC were represented as matrices
of size N x N, where N = 416. While SC values represent
the white-matter fiber density between regions, FC values
correspond to the Pearson correlation between the average time
series of each pair of ROIs.

III. METHODS
A. Multilayer graphs

Let M = (G,C) denote a multilayer graph where G is
a set of graphs and C is a set of connections that link the
vertices of different L graphs. Specifically, G = {G,|a € N}
where G, = (V,, F,,) is an undirected, weighted, and without
self-loop graph at layer a. The relationship between the set
of N vertices V, and the set of N(N — 1) edges E, can
be characterized by an adjacency matrix A € RY*N with
elements Af, = wf; if an edge connects vertices i and j
in layer a, and A7, = 0 otherwise. The set of connections
between the vertices of the graphs at different layers a and
B is represented by C = {E.3 C V, x Vgla # B}. The
supra-adjacency matrix S € RNEXNL provides a practical
and straightforward extension of the adjacency matrix to the
multilayer graph case. Let M be a weighted and undirected
multilayer graph with N vertices per layer and L layers, its
supra-adjacency matrix S elements are S?jﬁ = w?jﬁ if there is
a connection between vertex ¢ in layer o and vertex j in layer
3, and S?jﬂ = 0 otherwise. S can therefore be visualized as a
block matrix where L blocks on the main diagonal account for
within layer links, while L(L — 1) off-diagonal blocks account
for interlayer links.

Specific instances of multilayer graphs are known as mul-
tiplexes. In a multiplex, interlayer links exist only between
replica nodes. These connections indicate the corresponding
nodes across different layers in the model. Thus, in a multiplex
Va=V,ae{l,...,L} and C = {E,p C {(v,v)|v € V}a #
£}. In this configuration, the off-diagonal blocks of S are filled
by the N x N identity matrix.

B. Multiplex construction

In this study we built multiplexes using FC and SC matrices.
This results in the following multiplex with L = 2 layers:

M = {Al®] Vo € {rs-fMRI, dMRI}} (1)

where Al is the adjacency matrix for the modality a. To
reduce the influence of spurious fibers, all connections with
less than 2 fibers were eliminated from SC matrices. Similarly,
all negative connections in the FC matrices were also deleted,
as suggested in [28]. In addition, the SC matrices edges

1503



Multilayer graph costruction

Classification

Overlapping strength

_— Mmcl

Participation coefficient

5

QOO0

Fig. 1. Framework pipeline. Cortical (blue) and subcortical (red) regions are segmented into 416 ROIs. The structural layer is derived from dMRI (density
of white matter fibers), while the functional layer is constructed using the Pearson correlation coefficient between rs-fMRI time series. Each layer is assigned
four coefficients to adjust the edge weights both within and between the cortical and subcortical networks and the latter are optimized through the SHGO
algorithm. The two layers are linked through replica nodes, and the resulting MG are used to compute the strength and multiplex participation coefficient,

which are then utilized for the classification task.

were log-transformed to account for the skewed distribution.
Both connectivity matrices were then thresholded using a
consistency-based method to retain only the top 25% most
consistent edges [29]. Since the weights in each layer may
span different ranges, we applied a min-max normalization
to each layer. This normalization scales all edge weights
to the interval [0, 1], allowing for direct comparison across
layers. To effectively capture differential connectivity patterns
in the MG, we assigned four distinct weighting coefficients
to each layer. These coefficients regulate the relative influence
of specific network components, ensuring that both FC and
SC contribute meaningfully to the classification task (see
II-D). Specifically, we distinguished between (i) connectivity
within cortical networks, (ii) connectivity between different
cortical networks, (iii) connectivity within the subcortical
network, and (iv) connectivity between cortical and subcortical
regions. These connections correspond to the yellow, blue,
light blue, and fuchsia links in Fig. 1, respectively. Intra-
cortical connections facilitate local processing, while inter-
cortical connections enable large-scale integration across brain
regions. In contrast, subcortical structures play crucial roles
in memory, motor control, and emotional regulation. Con-
nectivity within these subcortical regions and with cortical
regions offers insights into the integrity of essential circuits,
which are notably affected in AD [6]. However, determining
the optimal balance between these connectivity types is non-
trivial, as their relative contributions to classification may vary
across different disease stages. To address this, we employed
the SHGO algorithm [16]. Each potential solution in the
SHGO algorithm represents a set of weighting coefficients
x defined as coordinates of the 8-dimensional search space,
where each dimension is bounded between 0 and 1. To guide
this optimization process, we formulated a fitness function F'
based on Fisher’s criterion, which measures the separability

between groups:

F(I) — (MGH iﬁ) :ZGQ (SC))2 )
G1 Go

where Mg, (z) and Mg, () represent the mean of a metric

2 NV 2
for the two groups and s3, = > .4, (Ms(x) — Mg, (v))*.
This fitness function ensures that the optimization process
prioritizes solutions that maximize the difference between
groups while minimizing within-group variability.

C. Metrics

Several metrics have been proposed in the literature to
measure MG properties [10], [17] in terms of centrality, mod-
ularity, segregation or integration and efficiency. To quantify
the difference between the groups, we leveraged two relevant
multiplex metrics: the overlapping strength and the multiplex
participation coefficient, which have previously been used to
identify the loss of inter-frequency hubs in fMRI [13] and
MEG [12] studies employing MG. The single « layer strength
measures the importance of a node in a specific layer and is
defined as k" = >, £ Af“j, while the overlapping strength
measures the importance of a node across-layer and is defined
as 0s; = >, D ;S5 According to this definition, the
higher the overlapping strength value, the more important a
node is in the multiplex network. On the other hand, the
multiplex participation coefficient measures the connectivity
similarity pattern across layers and is defined as mpc; =
A1- 2221(%)2]’ where L is the number of layers in the
multiplex. In this formulation mpc; ranges from 0 to 1 and
indicates how uniformly the links of node ¢ are distributed
across layers. Specifically, mpc; = 0 if all edges of node
are confined to a single layer, while mpc; = 1 if the edges
are evenly distributed across all L layers, with higher values
indicating a greater balance of node ¢ connections among the
layers.
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D. Classification

Once we have found the optimal configuration of coeffi-
cients for each feature, we can compute and use them for the
classification task. We trained three different binary classifiers
to perform pairwise classification of the considered groups:
HC vs. MCI, HC vs. AD and MCI vs. AD. We then evaluated
the performance of 4 different classifiers: k-nearest neighbors
(KNN), support vector machine (SVM), Logistic Regression
(Logit) and Multi-layer Perceptron (MLP). The classifiers were
trained using a Leave-One-Out Cross-Validation (LOOCYV)
scheme and their performance were evaluated using the test set
balanced accuracies. Incremental feature selection was carried
out adding one feature to the subset of features at each step
according to the ANOVA ranking. The classification perfor-
mance of our Weighted Multiplexes (WMP) using overlapping
strength (os) and multiplex participation coefficient (mpc) were
compared to other three methods: Un-Weighted Multiplexes
(UWMP) using the same features as WMP, Single-Layer
Structural Graph (SSG) and Single-Layer Functional Graph
(SFG) using strength (k).

IV. RESULTS AND DISCUSSION

TABLE I
COMPARISON OF TEST BALANCED ACCURACIES.
Method HC vs. MCI | HC vs. AD | MCI vs. AD | Average
WMP,, . 61.3% 82.2% 69.1% 70.8%
WMP,,, . 67.5% 83.4% 75.1% 75.3%
WMP, . ipe 69.8% 83.6% 72.0% 75.1%
UWMP, ¢ 63.7% 77.3% 71.8% 70.9%
UWMP,,, ¢ 63.7% 78.5% 71.8% 71.3%
UWMP,; L mpe 67.2% 79.5% 71.8% 72.8%
SFG 62.0% 71.9% 69.1% 67.7%
SSGy, 59.8% 83.7% 77.4% 73.6%
SFG, + SSGy, 60.7% 81.0% 77.4% 73.0%

Since all classifiers performed similarly, Table I reports the
highest test set balanced accuracy achieved in the classifica-
tion tasks using the LOOCV scheme. Overall, our method
outperforms the other approaches on average. In more details,
our WMP framework achieved the highest accuracy for HC vs.
MCI classification task, suggesting that multimodal integration
and weighting may be more sensitive to subtle connectivity
changes related to the earliest stages of the disease. Our
method performs at the level of single-layer graphs for the
HC vs. AD comparison, but achieves slightly lower accuracies
than SSG or combined SSG and SFG for the MCI vs.
AD classification task. Fig. 2 illustrates the contribution
of different coefficients to the optimization problem for the
HC vs. AD classification task. When using the participation
coefficient, the SC coefficient between subcortical and cortical
regions emerges as the most important, along with the FC
coefficient within cortical regions, suggesting their crucial role
in distinguishing AD from HC. However, when using the
overlapping strength as metric, the highest weight is assigned
to FC within sub-cortical regions, indicating that alterations
in subcortical network integration are particularly relevant for
AD classification. Fig. 3 highlights the contribution of different
brain regions for the HC vs. AD classification task. Recent
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Fig. 2. Mean value of coefficients for the HC vs AD classification task using
Participation coefficient (top figure) and Overlapping strength (bottom figure).

research highlights the crucial role of subcortical regions in
AD, showing that their structural and functional alterations
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Fig. 3. Most selected features using Participation coefficient (top figure) and
Overlapping Strength (bottom figure) for HC vs AD classification task. The
results highlight the top 20% of features that were selected most often during
the LOOCYV scheme, indicating their relative importance.
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play a key part in disease progression [30]. AD is characterized
by pathophysiological changes which lead to neuronal loss in
the MTL, including the hippocampus®, whose degeneration
results in memory loss. In line with findings in the literature for
both dMRI [15], fMRI [14] and MG [31] studies, our results
show that the hippocampus and the regions from the DMN,
are the most critical regions for the classification between
HC and AD using overlapping strength. When classification
relies on the multiplex participation coefficient, the selected
regions sometimes differ, likely because this metric captures
connectivity similarity patterns across modalities, emphasizing
the integration of different layers while de-emphasizing local,
single-layer properties.

V. CONCLUSION

This study presents a novel MG framework for integrating
rs-fMRI and dMRI data to classify between AD, MCI, and
HC patients. By optimizing the contributions of SC and
FC layers through a SHGO algorithm, the proposed frame-
work achieves promising improvement in the identification
of AD, especially in its earliest clinical stages, compared to
unimodal approaches. The results highlight the importance
of cortical-subcortical connectivity, particularly involving the
hippocampus and DMN regions, in distinguishing between
disease stages. Results demonstrate the potential of MG to
enhance our understanding of brain connectivity alterations
in neurodegenerative diseases and improve early detection of
AD. For future work, we aim to expand our framework by
incorporating additional MG metrics to better capture various
brain properties and apply them to the classification of other
neurodegenerative diseases, such as Parkinson’s disease.

REFERENCES

—_

[1] P. Scheltens, et al., “Alzheimer’s disease,” The Lancet, vol. 397, no.
10284, pp. 1577-1590, 2021.

[2] G. B. Frisoni, N. C. Fox, C. R. Jack, P. Scheltens, and P. M. Thompson,

“The clinical use of structural MRI in Alzheimer disease,” Nature

Reviews Neurology, vol. 6, no. 2, pp. 67-77, 2010.

R. Sperling, “The potential of functional MRI as a biomarker in early

Alzheimer’s disease,” Neurobiology of aging, vol. 32, no. Suppl 1, pp.

S$37-S43, 2011.

[4] M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, “Default-
mode network activity distinguishes Alzheimer’s disease from healthy
aging: Evidence from functional MRI,” Proceedings of the National
Academy of Sciences, vol. 101, no. 13, pp. 4637—4642, 2004.

[5] D. Salat, et al., “White Matter Pathology Isolates the Hippocampal
Formation in Alzheimer’s Disease,” Neurobiology of aging, vol. 31, no.
2, pp. 244-256, 2010.

[6] Y. Zhou, J. H. Dougherty, K. F. Hubner, B. Bai, R. L. Cannon, and
R. K. Hutson, “Abnormal connectivity in the posterior cingulate and
hippocampus in early Alzheimer’s disease and mild cognitive impair-
ment,” Alzheimer’s & Dementia, vol. 4, no. 4, pp. 265-270, 2008.

[7]1 E. Bullmore and O. Sporns, “Complex brain networks: graph theo-
retical analysis of structural and functional systems,” Nature Reviews
Neuroscience, vol. 10, no. 3, pp. 186-198, 2009.

[8] O. Sporns, “Structure and function of complex brain networks,”
Dialogues in Clinical Neuroscience, vol. 15, no. 3, pp. 247-262, 2013.

[9] J.S. Damoiseaux and M. D. Greicius, “Greater than the sum of its parts:

a review of studies combining structural connectivity and resting-state

functional connectivity,” Brain Structure and Function, vol. 213, no. 6,

pp. 525-533, 2009.

—
(98]
[t

3The hippocampus is a cortical structure, but we classified it as "subcortical’
following common brain atlas terminology.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

1506

M. De Domenico, et al., “Mathematical Formulation of Multilayer
Networks,” Physical Review X, vol. 3, no. 4, pp. 041022, 2013.

J. Guillon, et al., “Disrupted core-periphery structure of multimodal
brain networks in Alzheimer’s disease,” Network Neuroscience, vol. 3,
no. 2, pp. 635-652, 2019.

M. Yu, et al., “Selective impairment of hippocampus and posterior hub
areas in Alzheimer’s disease: an MEG-based multiplex network study,”
Brain, vol. 140, no. 5, pp. 1466-1485, 2017.

J. Guillon, et al., “Loss of brain inter-frequency hubs in Alzheimer’s
disease,” Sci Rep, vol. 7, no. 1, pp. 10879, 2017.

B. Ibrahim, et al., “Diagnostic power of resting-state fMRI for detection
of network connectivity in Alzheimer’s disease and mild cognitive
impairment: A systematic review,” Human Brain Mapping, vol. 42,
no. 9, pp. 2941-2968, 2021.

L. Billeci, A. Badolato, L. Bachi, and A. Tonacci, “Machine Learning
for the Classification of Alzheimer’s Disease and Its Prodromal Stage
Using Brain Diffusion Tensor Imaging Data: A Systematic Review,”
Processes, vol. 8, no. 9, pp. 1071, 2020.

S. C. Endres, C. Sandrock, and W. W. Focke, “A simplicial homology
algorithm for Lipschitz optimisation,” Journal of Global Optimization,
vol. 72, no. 2, pp. 181-217, 2018.

F. Battiston, V. Nicosia, and V. Latora, “Structural measures for
multiplex networks,” Physical Review E, vol. 89, no. 3, pp. 032804,
2014.

W. J. Jagust, et al., “The Alzheimer’s Disease Neuroimaging Initiative 2
PET Core: 2015, Alzheimer’s & Dementia, vol. 11, no. 7, pp. 757-771,
2015.

M. S. Albert, et al., “The diagnosis of mild cognitive impairment due
to Alzheimer’s disease: Recommendations from the National Institute
on Aging-Alzheimer’s Association workgroups on diagnostic guidelines
for Alzheimer’s disease,” Alzheimer’s & Dementia, vol. 7, no. 3, pp.
270-279, 2011.

M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and
S. M. Smith, “FSL,” Neurolmage, vol. 62, no. 2, pp. 782-790, 2012.

N. Wiest-Daesslé, S. Prima, P. Coupé, S. P. Morrissey, and C. Barillot,
“Rician noise removal by non-Local Means filtering for low signal-to-
noise ratio MRI: applications to DT-MRI,” Internation Conference on
Medical image computing and computer-assisted intervention : MICCAI,
vol. 11, no. Pt 2, pp. 171-179, 2008.

T. Dhollander, D. Raffelt, and A. Connelly, “Unsupervised 3-tissue
response function estimation from single-shell or multi-shell diffusion
MR data without a co-registered T1 image,” in ISMRM workshop on
breaking the barriers of diffusion MRI. 2016, vol. 5, Lisbon, Issue: 5.
B. Jeurissen, J.-D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers,
“Multi-tissue constrained spherical deconvolution for improved analysis
of multi-shell diffusion MRI data,” Neurolmage, vol. 103, pp. 411426,
2014.

J. D. Tournier, F. Calamante, and A. Connelly, “Improved probabilistic
streamlines tractography by 2nd order integration over fibre orientation
distributions,” in Proceedings of the international society for magnetic
resonance in medicine. 2010, vol. 1670, Stockholm.

R. E. Smith, J. D. Tournier, F. Calamante, and A. Connelly, “SIFT2:
Enabling dense quantitative assessment of brain white matter connectiv-
ity using streamlines tractography,” Neurolmage, vol. 119, pp. 338-351,
2015.

A. Schaefer, et al., “Local-Global Parcellation of the Human Cerebral
Cortex from Intrinsic Functional Connectivity MRL,” Cerebral Cortex,
vol. 28, no. 9, pp. 3095-3114, 2018.

Y. Tian, D. Margulies, M. Breakspear, and A. Zalesky, “Topographic
organization of the human subcortex unveiled with functional connec-
tivity gradients,” Nature Neuroscience, vol. 23, no. 11, pp. 1421-1432,
2020.

M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: Uses and interpretations,” Neurolmage, vol. 52, no. 3,
pp. 1059-1069, 2010.

J. A. Roberts, A. Perry, G. Roberts, P. B. Mitchell, and M. Breakspear,
“Consistency-based thresholding of the human connectome,” Neurolm-
age, vol. 145, pp. 118-129, 2017.

A. Shukla, R. Tiwari, and S. Tiwari, “Analyzing subcortical structures
in Alzheimer’s disease using ensemble learning,” Biomedical Signal
Processing and Control, vol. 87, pp. 105407, 2024.

A. Canal-Garcia, et al., “Multiplex connectome changes across the
alzheimer’s disease spectrum using gray matter and amyloid data,”
Cerebral Cortex, vol. 32, no. 16, pp. 3501, 2022.



