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Abstract—Bipolar disorder is a mood disorder characterized 

by emotional and cognitive dysregulation, with often late 

diagnosis. This study explores a frontal system combining 

electroencephalography (EEG) and functional near-infrared 

spectroscopy (fNIRS) to aid diagnosis. The fNIRS system is 

confined to the frontal region to minimize interference from hair 

and EEG analysis is likewise restricted to this area. However, 

this restriction introduces ocular artifacts, traditionally 

removed using electrooculography. We propose an adaptive 

Artifact Subspace Reconstruction method—originally for high-

amplitude noise correction—to address ocular artifacts without 

electrooculography, optimizing its parameters per subject and 

session. Specifically, we focus on the k parameter, which 

controls the artifact rejection threshold. Widely studied in 

literature, k influences signal correction and classification. We 

compared classification performance obtained using our 

adaptive k to that achieved with a fixed k, to evaluate the impact 

of each approach on signal correction and diagnostic accuracy. 

Given the spatial constraints of the setup, we combine EEG and 

fNIRS to enhance classification performance by exploiting their 

complementary properties and neurovascular coupling. Our 

results show that our frontal bimodal system, with adapted 

Artifact Subspace Reconstruction yields promising outcomes 

while preserving neural data integrity, demonstrating the 

feasibility of this approach for aiding bipolar disorder diagnosis.  

Keywords—Electroencephalography, Functional Near-

Infrared Spectroscopy, Bipolar Disorder, Artifact Subspace 

Reconstruction, Adaptive Preprocessing 

I. INTRODUCTION 

Bipolar disorder (BD) is a mood disorder characterized by 
emotional and cognitive dysregulation. The emotional 
dysregulation manifests as deficits in the execution of 
cognitive tasks involving emotional interference. These 
deficits are tied to impaired fronto-limbic connectivity marked 
by hyperactivation of limbic areas and hypoactivation of 
frontal areas, as shown by neuroimaging studies particularly 
through the functional magnetic resonance imaging (fMRI) 
[1]. However, fMRI is costly, sensitive to movement artifacts 
and lacks portability, limiting its routine clinical use. In 
contrast, some studies have employed accessible techniques 
such as electroencephalography (EEG) and functional near-
infrared spectroscopy (fNIRS). EEG records electrical 
activity, while fNIRS measures changes in oxygenated (HbO) 
and deoxygenated (HbR) hemoglobin concentrations in the 
brain. These modalities have been used to examine deficits in 
electrical activity [2] and perfusion [3] of BD patients. Studies 

combining the two modalities highlight impairments in 
fronto-limbic network [4] of BD patients.  

Our study explores a combined frontal EEG-fNIRS setup 

for classification of BD patients (BP), healthy controls (HC) 

and BP subtypes (BPI and BPII). Although the system 

addressed the whole head for the EEG, had EOG electrodes, 

and optodes on the frontal part for the fNIRS, we focus only 

on the frontal part for both modalities.  We hypothesize that 

this frontal setup could still reveal cortical markers of BD 

emotional dysregulation via an emotional Stroop task. The 

frontal area avoids some hair-related artifacts for the fNIRS, 

while it is more sensitive to ocular artifacts for the EEG, these 

ocular artifacts are typically corrected using an 

electrooculography (EOG)—a component excluded here to 

maintain a frontal system. To overcome this, we adapt the 

Artifact Subspace Reconstruction (ASR) method, 

traditionally used for high-amplitude artifact correction, to 

also eliminate ocular artifacts without EOG by optimizing its 

parameters per subject and session. Specifically, a critical 

component of ASR is the parameter k, which determines the 

threshold for artifact rejection. Previous studies have 

highlighted its influence on signal correction effectiveness 

[5] and classification outcomes [6]. Instead of using a fixed k 

parameter, we adapted k parameter per subject and session, to 

optimize artifact correction while maintaining signal 

integrity. Our approach aligns with the work of Kim et al. [7], 

who developed ASR variants to both enhance artifact 

removal and increase usable calibration data, thereby 

improving original ASR performance in challenging, real-

world EEG signals. The reduced spatial coverage of EEG, 

may affect classification performances. fNIRS is added to 

compensate for this limitation as the combination of both 

methods exploits their complementary strengths (temporal 

and spatial resolution). It also enables addressing 

neurovascular coupling [8].  

The study's objectives are: first to evaluate the feasibility 

of a frontal EEG-fNIRS system for classifying BD and its 

subtypes while addressing the challenges associated with a 

frontal setup (ocular artifacts). Second to assess the impact of 

our adapted ASR method, specifically by analyzing the 

impact of our adaptation of the k parameter compared to a 

fixed k on data correction, and classification accuracy.  
We first address the challenge of limited EEG spatial 

coverage to the frontal region by adapting ASR to correct 
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ocular artifacts without EOG. Once the EEG and fNIRS 
signals are preprocessed, we apply a feature selection to 
reduce feature dimensionality, followed by a classification 
with a support vector machine (SVM). We compare results 
across different ASR strategies (adaptive k and fixed k) and 
modality combinations (EEG-only vs. EEG-fNIRS).  

II. MATERIALS AND METHODS 

A. BipoNIRS clinical study 

The study initially enrolled 25 HC and 46 BP, with 21 BPI 
and 25 BPII. Following the exclusion of data from participants 
with technical issues, the final cohort included 18 HC and 40 
BP (19 BPI and 21 BPII).  

The study performed a modified emotional Stroop task 
incorporating emotional images, based on the protocol 
established by Quan et al. [9]. The protocol design, illustrated 
in Fig. 1 comprises blocks of neutral, positive, and negative 
images and participants were instructed to identify the image 
frame color. The behavioral analysis on response data and 
response time of the BipoNIRS protocol is detailed in [10], 
revealing differential emotional interference processing in BD 
patients compared to HC. 

 
Fig. 1.  BipoNIRS protocol presenting the experimental blocks (2 blocks of 
neutral, 2 blocks of negative, and 2 blocks of positive images) with inter-trial 

intervals (9-11s), rest periods (50s), and randomized order. It also indicates 

the resting phase at the beginning and the training phase with neutral images. 
Participants were instructed to respond “as quickly and as accurately as 

possible” to the color of the image frame, ignoring the emotional content, by 

pressing the corresponding keyboard key.   

EEG data were collected with a 64-channel full-head EEG 
cap (10-20 system, ActiCap 64ch). To assess the feasibility of 
a frontal system, the analysis of EEG was restricted to the 
frontal part. fNIRS data were acquired using the OXYMON 
MK III system (Artinis), with 4 sources and 4 detectors, 
forming 6 channels on the prefrontal and frontal areas.  

B. Preprocessing of EEG and fNIRS signals 

The following pipeline is implemented within MATLAB 

toolboxes and EEGLab. 

1) EEG 
In standard EEG preprocessing pipeline, signals are first 

band-pass filtered [1-45] Hz and then ASR is applied to 
correct high-amplitude artifacts. ASR, introduced by T. 
Mullen and colleagues [11] is an effective Principal 
Component Analysis (PCA) based approach for EEG 
denoising. ASR is particularly advantageous because it 
reconstructs artifact-contaminated segments rather than 
eliminating them, preserving the integrity of the original data. 
In the literature, researchers apply ASR with default 
parameters. It is followed by Independent Component 
Analysis (ICA) to remove ocular component with a 
correlation between the Independent Component (IC) and the 
ocular signal recorded with the EOG. However, to develop a 
minimal frontal EEG-fNIRS system and get rid of EOG, we 
adapted the ASR method to correct ocular and motion 
artifacts.  Our approach estimated ASR parameters 

dynamically based on the artifacts’ distribution for each 
subject and session. The ASR depends on several predefined 
parameters, among which the cutoff k parameter is the most 
widely studied, as it determines the artifact rejection 
threshold. The parameter influences the proportion of data 
retained after signal correction by the ASR. In the literature, 
researchers typically set k based either on signal correction 
quality [5] or on classification outcomes [6]. Other ASR 
parameters are generally left at their default values, fixed to 
address high amplitude artifacts. However, in our study, we 
move beyond this fixed approach by implementing an 
adaptive method, enabling a more dynamic and subject and 
session specific correction strategy. To provide a clearer 
understanding of our adaptation, we recall its key steps in 
Equations (1) to (7), based on the original definition of ASR 
by Mullen et al. [11], and according to the notations we used 
in [5].  

The ASR method comprises three main steps: 
The first step consists of data calibration to determine 

clean segments 𝐗0 of EEG signals X. This calibration phase 
was performed on the beginning of the signal (0-300s) 
including a resting phase, and a short task execution period to 
ensure that both artifact-free and artifact-contaminated 
segments are present to get a relevant characterization of the 
artifacts.  

In this calibration step, X is segmented using a sliding 

window of windowlength samples. To define windowlength 

parameter, we analyzed the artifact width distribution to size 

it according to the artifacts’ duration. We wanted to get a 

broad understanding of artifact width in each channel. We 

began by detecting artifacts using the raw data distribution in 

each channel with the upper bound set at 98%. We chose this 

threshold to capture a subset of outliers sufficiently 

representative of ocular and movement artifacts to give a 

general idea of their widths in each channel without aiming 

for exhaustive detection. Fig.2 illustrates the frontal channel 

AF4 with small artifact widths due to ocular artifacts, which 

tend to be brief. Finally, the windowlength was determined as 

the maximum of the median artifact widths for each channel. 

The median was used to ensure that the estimated artifact 

widths reflect the general trend without the impact of extreme 

values. By taking the maximum of these medians across 

channels, we ensured that the selected window is sufficiently 

large to account for even the widest artifacts. 

 
Fig. 2. Artifact width distribution for the frontal EEG channel AF4. The 
distribution shows ocular artifacts with small widths, which tend to be brief. 

Few larger artifacts are present corresponding to motion artifacts. 

After segmenting X using a sliding window of size our 

estimated windowlength, the Root Mean Square (RMS) are 

computed and z-scored for each window and channel. A 

window is noted as clean if the z-scored RMS value for all 

channels belongs to the preliminary set data range [ref1 ref2]. 

The clean data 𝐗0 is obtained after rejecting all the data 

outside these bounds. To estimate references [ref1 ref2], we 

analyzed the distribution of the z-scored RMS values 
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computed from the initial raw data. First, we identified 

outliers on each channel, corresponding to motion and ocular 

artifacts, ensuring that no artifacts were missed—particularly 

ocular artifacts, which are predominant in the frontal region 

(as illustrated in Fig. 3 on AF4, frontal). To establish the 

thresholds, we used the lower 5% and upper 95% bounds of 

the z-score distribution. Z-scores falling outside these bounds 

were classified as an artifact. Since the analysis was 

performed on multiple frontal EEG channels, each channel 

had its own lower and upper bounds values. To establish a 

representative global threshold that applies across all 

channels, we computed the mean of the z-scores at the lower 

and upper bounds across all channels, yielding the key 

reference values [ref1 ref2]. 

  
Fig. 3. Z-score distribution for the frontal EEG channel AF4. Most data 
points are low-amplitude fluctuations (neural activity), with low-amplitude 

outliers close to the mean, likely representing ocular artifacts. Additionally, 

few higher-amplitude artifacts are present, related to motion artifacts.  

During the second step of the ASR, a rejection of artifacts 

threshold is defined based on these calibration data. The 

covariance matrix 𝐂0 of 𝐗0 is calculated. 𝐂0 is decomposed 

into its eigenvectors 𝐔0 and eigenvalues 𝛌0 representing the 

principal components (PC) of the data (1). 
 𝐂0 =  𝐂0diag(𝛌0)𝐔0

𝑇    𝐔0 = [𝐮0,1, …𝐮0,𝑖,…𝐮0,𝑁𝑐]   () 

Then the calibration data are transformed into the eigenvector 

space. It involves projecting the data onto the PC space. A PC 

score is computed as in (2).  
 𝐲0,𝑖 =  𝐮0,𝑖

𝑇 𝐗0  () 

Once the PC scores are obtained, the data are segmented with 

a sliding window of windowlength_calibrate samples. We 

defined windowlength_calibrate equal to windowlength. For 

each window of each channel, the RMS is computed, as well 

as the mean 𝜇0,𝑖  and standard deviation 𝜎0,𝑖 . The rejection 

threshold for artifacts is defined on channel i by: 
 𝑠0,𝑖 = µ0,𝑖 + 𝑘 ⋅ 𝜎0,𝑖   () 

With 𝑘 a unique cutoff parameter common to all channels 

representing the number of standard deviations 𝜎0,𝑖 from the 

mean µ0,𝑖, setting the artifact rejection threshold. We aimed 

to establish a stable and representative k parameter.  Instead 

of using the z-score value at the upper bound 95% for each 

channel, the median across all channels was selected to define 

k parameter. This approach facilitates artifact identification 

while mitigating the impact of very high-amplitude artifacts, 

which could result in a k value that is not aggressive enough 

to correct ocular artifacts, and preventing overcorrection due 

to excessively low-amplitude artifacts. We compared our 

adaptive k with a fixed k value by evaluating both 

classification performance and percentage of retained data. 

This allowed us to determine which method better preserved 

the original signal, ensuring that the data used for 

classification remained representative and minimally affected 

by overcorrection. To define this fixed k parameter, we 

leveraged the distribution of adaptive k values observed 

across subjects in each group. The boxplots displayed in the 

Fig. 4 represent the adaptive k values for each subject per 

group. The fixed k was determined as the median of these 

subject-level k values within each group. This group-level 

median served as the fixed k value, ensuring a standardized 

correction threshold within each group. 

 
Fig. 4. Boxplots of k value for each subject within each group: patients with 

bipolar disorder type I (BPI), type II (BPII) and healthy controls (HC). Fixed 
k is defined as the median of adaptive k obtained per subject within each 

group (20 for HC, 17 for BPI and BPII).  

Finally, the last step consists in segmenting the raw 

data X with a sliding window of windowlength_recons 

samples for each channel. We defined windowlength_recons 

equal to windowlength. As previously, the covariance matrix 

C is computed. It is decomposed into PC scores. Let us 

denote the Y the matrix of PC scores determined as: 

 𝐘 =  𝐔𝑻 𝐗  () 

The eigenvalue of each score is compared to the rejection 

threshold  𝐬0 projected into this new space according to (5). 

It determines if the PC is clean or noisy for each channel. 
 𝜆𝑖 < ‖𝒖𝑖

𝑇𝐔0 ⋅ diag( 𝒔𝟎)‖2
2 () 

The ASR goal ASR is to correct artifacts without changing 

the signals’ clean data. We denote the clean PC scores as: 
 𝐘𝐴 = 𝐔𝐴

𝑇𝐗  () 

The idea is to find the solution 𝐙̂ minimizing the Euclidean 

norm in the unconstrained least-squares problem defined as: 

 𝛷(𝐙) = ‖𝐔𝐴
𝑇𝐂0

1/2
𝐙 − 𝐘𝐴‖

𝐹

2
  () 

With 𝐙 , a zero-phase component analysis whitened EEG 

epoch. Finally, we obtain clean signals with the equation:   

 𝐗𝑐𝑙𝑒𝑎𝑛 = 𝐂0
1/2

 𝐙̂ = 𝐂0
1/2

(𝐔𝐴
𝑇𝐂𝑂

1/2
)

+
𝐔𝐴

𝑇𝐗  () 

2) fNIRS 

fNIRS signals are impacted by various sources of noise 

categorized into physical artifacts and physiological artifacts 

(e.g., systemic intra- and extracerebral factors). To 

preprocess fNIRS data, we applied a band-pass filter [0.01-

0.3] Hz, to remove physiological artifacts. Motion artifacts 

were corrected using Tukey’s Biweight Robust Mean method 

and we utilized PCA [12] to mitigate the impact of 

extracerebral activities. This statistical method is used 

particularly when short-distance channel is unavailable. 

C. Features selection and classification 

To perform feature extraction, we epoched EEG signals 
into 2-second segments aligned with stimulus onset. We then 
computed event-related potentials (ERPs) for each condition 
and each subject on the frontal region. fNIRS signals were 
epoched on stimulus and post-stimulus resting periods to 
capture the full vascular response. We defined stimulus-
evoked hemodynamic responses (SHRs) per subject by 
averaging HbO and HbR concentrations for each condition. 
Three time windows were defined on SHRs that focused on 
the signal delay (2-4s), the signal amplitude and slope (4-6s), 
the decline phase (6-8s). In parallel, we determined on ERPs 
time windows identified through statistical analysis and 
validated against literature [13] , [14]. These windows were 
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(a) 

(b) 

(c) 

centered around peaks associated with specific cognitive 
processes: (70-130ms) a visual component, (200-300ms) an 
attention-related component, (450-650ms) an emotional one 
and (900-1100ms) related to a higher order cognitive function 
[13]. The integrals of ERPs/SHRs were calculated within 
these windows to construct the EEG and fNIRS feature sets. 
A feature selection was performed on fNIRS and EEG 
features independently to reduce dimensionality. It retained 
only the most relevant features, addressing the limited dataset 
size. A fusion approach was applied to combine the selected 
features of each modality into a unified vector, leveraging 
their complementary nature. We then employed an SVM 
classifier, optimizing its hyperparameters via grid search and 
5-fold cross-validation on the training data, and then assessed 
its performance on independent test subject using leave-one-
out cross-validation. 

III. RESULTS 

Concerning the preprocessing of frontal EEG, a key 

challenge was the correction of ocular artifacts without EOG. 

Fig. 5 illustrates this correction with our adapted ASR on the 

frontal AF4 channel. The raw signal (blue) contains ocular 

artifacts and at the end of the signal, high-amplitudes (motion) 

artifacts are observed. The beginning of the signal (gray) 

represents the calibration phase for ASR parameters 

estimation with both artifact-free and artifact-contaminated 

segments. After applying ASR, the corrected signal (orange) 

shows a reduction in ocular artifacts and motion artifacts, 

while preserving the neural signal.  

 
Fig. 5. Electroencephalography (EEG) signal correction using adapted 
Artifact Subspace Reconstruction (ASR) on AF4. The raw signal (blue) 

exhibits ocular artifacts and some motion artifacts. The signal beginning 

contains the calibration phase (gray area) for the ASR parameters estimation, 
with artifact-free and artifact-contaminated segments. After applying ASR, 

the corrected signal (orange) shows a correction of artifacts (ocular and high-

amplitude), while preserving the neural activity (87% data retained). 

To thoroughly assess the impact of the k parameter 

definition in the ASR, we compared classification results 

(EEG-only and EEG-fNIRS) using an adaptive k parameter 

versus a fixed k parameter. This comparative approach allows 

for a deeper understanding of how signal correction influences 

classification performance. Additionally, the classification 

enables us to assess whether the integration of fNIRS 

improves results, ensuring that we achieve acceptable 

performance with a frontal-only bimodal system.  

BPI vs. HC classification (Fig. 6, a): For EEG-only 

classification, the adaptive k parameter achieved an accuracy 

of 84%, correctly identifying 83% of HC and 84% of BPI 

subjects. In contrast, the fixed k parameter resulted in a 

significantly lower accuracy of 68%. When integrating 

fNIRS, the accuracy remained at 81% with adaptive k. With 

fixed k it increased to 73%, reducing HC misclassification. 

However, while fNIRS improved classification with fixed k, 

the performance remained lower, especially for the 

classification of HC subjects than the adaptive k results.  
BPII vs. HC classification (Fig. 6, b): For EEG-only 

classification, the adaptive k parameter achieved an accuracy 

of 67%, we observed a high misclassification rate for BPII 

(43%). With the fixed parameter, accuracy of 69% was 

slightly better, but with a high misclassification rate for HC 

(39%). When fNIRS was integrated, classification accuracy 

significantly increased to 82% with adaptive k, enhancing 

BPII classification (from 57% to 86%). With fixed k, the 

addition of fNIRS also improved BPII classification. 

However, HC classification remained lower (64%), 

suggesting that fixed k alters the balance of classification 

performance across groups.  

BPI vs. BPII classification (Fig. 6, c): In the case of 

adaptive k, EEG-only identified 79% of BPI but with high 

misclassification rate for BPII (35%). Adding fNIRS further 

improved accuracy to 75%, particularly by reducing BPII 

misclassification (from 38% to 24%). With the fixed k 

parameter, EEG-only accuracy dropped to 62%, with high 

misclassification rates for both groups (37% for BPI, 38% for 

BPII). Although fNIRS integration slightly improved results, 

they remained significantly lower than those obtained with 

adaptive k. Results further confirmed that fixed k parameter 

alters the balance of classification performance across groups 

(no reduction in the misclassification rate for BPII). 

       
 

       
 

       
Fig. 6. Classification of groups – Patients with bipolar disorder type I (BPI), 

type II (BPII) and healthy controls (HC). Confusion matrices showing the 
classification performance with the adaptive k and the fixed k parameter : (a) 

BPI versus HC (b) BPII versus HC (c) BPI versus BPII. It compares the use 

of electroencephalography (EEG) alone (left) and combined with functional 
near infrared (fNIRS, right).  The adaptive k approach outperformed fixed k 

in classification accuracy, with fewer misclassifications for HC subjects.  

The results confirm the feasibility of a frontal EEG-fNIRS 

system for BD diagnosis. fNIRS integration enhances 

performance by reducing misclassification, especially for the 

classification of BPII subjects. However, careful attention 

must be paid to the definition of ASR parameters, which affect 

the correction of signals and classification accuracy. While 

some classifications (e.g., EEG-only BPII vs. HC) show better 

performance with a fixed k parameter, the boxplots Fig. 7 

reveal a high dispersion in data retention compared to adaptive 

k. In particular, excessive correction was observed in some 

subjects BPI and BPII (up to 50% of data removed). This 

suggests that the filtering is too aggressive, correcting not only 
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(a) 

(b) 

noise but also potentially relevant signal information. 

Although fixed k occasionally yields better classification 

accuracy, it is crucial to question the quality of the data used 

for classification when signal is over-corrected. Higher 

classification accuracy with fixed k does not necessarily 

indicate better diagnostic validity, as it becomes unclear 

whether the model is distinguishing meaningful patterns or 

corrected segments. Unlike fixed k, the adaptive approach 

better preserves signal integrity by dynamically adjusting to 

each subject and session, ensuring that meaningful 

information is retained. It minimizes the risk of 

overcorrection, which could lead to misleading interpretations 

of classification results. This study highlights the importance 

of assessing the relevance of the k parameter not only in terms 

of classification performance but also in relation to the validity 

of processed data used for classification. 

   
Fig. 7. Boxplot of the percentage of data retained for healthy controls (HC), 

patients with bipolar disorder type I (BPI) and type II (BPII) with adaptive k 

(a) versus fixed k (b). High dispersion in percentage of data retained with 
fixed k, with aggressive filtering in some BPI and BPII subjects (up to 50% 

data removal), potentially eliminating relevant information. With adaptive k, 

data dispersion is lower, ensuring better signal integrity preservation.  

IV. CONCLUSION 

This study demonstrates the feasibility of a frontal-only 

EEG-fNIRS system for BD diagnosis. Implementing an 

adaptive ASR parameter (k) for EOG-free artifact correction 

proved superior to a fixed-k strategy, effectively removing 

ocular artifacts while preserving true neural signals and 

enhancing classification reliability. Additionally, combining 

EEG with fNIRS mitigates frontal EEG’s spatial limitations, 

notably improving bipolar II classification.  

Limitations include a small sample size, age imbalance 

between BP and HC, and the use of PCA instead of the more 

effective short-distance channels for extracerebral 

contributions in fNIRS signals correction [15]. Future work 

will focus on validating the current findings on a larger dataset 

and by reserving a dedicated hold-out subset—or an entirely 

external dataset to better assess generalizability. Additionally, 

incorporating short-distance channels will be prioritized to 

enhance the accuracy of extracerebral signal correction. 

 Moreover, integrating a few strategically placed EEG 

electrodes beyond the frontal region could enhance system 

robustness while keeping a minimal setup. For real-world 

deployment, time efficiency, hardware costs, and user-

friendliness will be crucial to ensure clinical applicability. 
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