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Abstract—Epilepsy is a neurological disorder marked by
recurrent and unpredictable disturbances in brain activity,
leading to epileptic seizures (ES). One approach of diagnos-
ing these seizures involves analyzing ElectroEncephaloGraphic
(EEG) signals, which are highly dynamic and complex. Recently,
researchers have been implementing Machine Learning (ML)
Deep Learning (DL) techniques to perform automatic seizure
detection of these EEG signals. ML models require extensive
feature extraction techniques compared with DL ones. Despite
the promising results of DL models in the detection task, their
computational cost is still a challenge. Moreover, DL models
require a large amount of training data which is not always
available. Hence, in this paper, a hybrid channel-wise lightweight
automatic seizure detection model based on vanilla autoencoders
and K-NN classifier is introduced. The model is able to generate
almost real-like data that can be used as data augmentation
technique and increasing the dataset spread for DL models. Mean
Square Error (MSE), Pearson Correlation Coefficient (PCC), and
Power Spectral Density (PSD) similarity were used to evaluate
the quality of the generated signal. Compared to other methods,
this model provided a competitive average reconstruction loss of
0.4515, an average precision of 93.69%, and a low parameter
count of 41.152k. The lightweight nature of this model could
potentially be used in wearable clinical devices for real-time
seizure detection.

Keywords—Epilepsy, Detection, EEG, Deep Learning, Autoen-
coder

I. INTRODUCTION

Epilepsy is the fourth most common neurological disorder,
affecting around 50 million people worldwide [1]. It is char-
acterized by unprovoked seizures caused by sudden irregular
neuronal activity in the brain and can lead to serious health
issues, including death [2]. Electroencephalography (EEG) is
a widely used method for monitoring and diagnosing epilepsy
due to its affordability and high temporal resolution [3]. EEG
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records brain activity using multiple electrodes placed on
different areas of the scalp or directly on the surface of the
brain, known as scalp EEG and intracranial EEG respectively.
Most studies focus on scalp EEG because this technique is
non-invasive and easier to obtain [4]. Interpreting EEG signals
requires trained neurologists, but manually analyzing long-
term recordings is time-consuming and labor-intensive [1]. As
a result, automatic EEG seizure detection has become a key
area of research in neuroinformatics.

In recent years, numerous studies have focused on develop-
ing automatic seizure detection systems using machine learn-
ing (ML) classifiers. This process typically involves two main
stages: feature extraction and classification. Feature extraction
plays a crucial role in identifying distinctive EEG patterns,
enabling the classifier to differentiate between relevant and
less relevant features more effectively. Most studies employ
extensive feature extraction techniques in order to detect
seizures, which can be classified into time-domain, frequency-
domain, and time-frequency domain features. The design of
these handcrafted methods, despite its efficiency in extracting
very useful features, often requires the expert knowledge to
derive interpretations. For example, the short-time Fourier
transform (STFT) is a common method to analyze EEG signals
and extract time-dependent frequency components from the
EEG signals, where these components can serve as features
for ML classifiers. In addition, time-domain features were
also known for their effectiveness in seizure detection such
as energy, min, max, skewness, kurtosis, and line-length [5].
More recently, deep learning (DL) approaches have arisen
and shown promising results in the field of epileptic seizure
detection, due to their ability to learn embedded features from
the signal without any feature extraction technique [6]. In EEG
seizure detection, deep learning models like convolutional
neural networks (CNN) and autoencoders (AE) have demon-
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strated superior robustness in extracting features compared to
handcrafted methods, leading to improved detection perfor-
mance [7]. Therefore, this study focuses on deep learning-
based approaches for EEG seizure detection using AE.

Despite the promising results obtained by DL models in
EEG epileptic seizure detection task, there are still unsolved
challenges that should be addressed. They require high com-
putational resources which potentially limit their application
in wearable clinical devices. In addition, DL models require
huge amount of data to be trained efficiently, which is not
always available.

To address the aforementioned challenges, a semi-
supervised lightweight hybrid DL/ML model based on AE and
K-Nearest Neighbors (K-NN) is proposed in this contribution.
Specifically, we used AE along with short time segments from
raw EEG data to extract features which then were trained
using K-NN classifier to perform classification. Hence, the
main contributions of this paper are:

o To significantly decrease the computational complexity of
the AE model by implementing a channel-wise detection
model rather than a multi-channel one.

« To be able to generate epilepsy-like new data for the use
in data augmentation.

The remainder of the paper is divided as follows: Section
IT discusses some of the AE-related works done recently.
Section III introduces the methodology steps to build our
model. Section IV shows the results obtained and Section V
concludes this paper and suggests some future prospects.

II. RELATED WORKS

Epileptic seizure detection using EEG signals has evolved
from traditional feature extraction methods to DL approaches.
Early methods relied on handcrafted features like STFT,
wavelet transform, and power spectral density (PSD) analy-
sis, requiring expert knowledge and extensive preprocessing.
With the rise of DL, models like CNN and recurrent neural
network (RNN) improved classification accuracy but remained
computationally expensive, limiting their use in real-time ap-
plications. In recent years, AEs have gained attention for their
ability to extract meaningful representations and generate syn-
thetic EEG data, reducing the need for large labeled datasets.
In this context, Abdelhameed et al. [8] developed a technique
based on convolutional variational autoencoder (VAE) to de-
rive features from EEG data, aiming to eliminate the need
for a manual feature extraction step prior to model training.
The features produced were then used with a supervised
classifier for seizure detection. Also, Daoud et al. [9] evaluated
two approaches focused on automatic feature extraction. The
first approach considered a deep convolutional AE to extract
features, which were then classified by a multilayer perceptron
(MLP). The second approach was an unsupervised pipeline
combining a deep convolutional VAE with K-Means clustering
based on the latent features.

Many studies on seizure detection primarily use AEs or
VAEs to extract features, which are then utilized with su-
pervised methods to classify EEG data. However, a small

number of approaches depend solely on AEs and VAEs for the
entire seizure detection process, employing only reconstruction
error metrics for classification. Huang et al. [10] applied
AEs for feature extraction in epilepsy detection, comparing
this approach against traditional principal component analy-
sis (PCA). They evaluated signal reconstruction using three
metrics: original-to-reconstructed signal ratio (ORSR), mean
squared error (MSE), and cosine similarity (CS), and found
these metrics to be sensitive indicators of epilepsy. They also
incorporated permutation importance and Shapley additive
explanations (SHAP) [11] to enhance model interpretability,
which validated the effectiveness of AE-based feature extrac-
tion over PCA.

Despite the advancements in DL-based seizure detection
methods, existing approaches face several challenges that
limit their practicality in real-world applications. Many AE
and VAE-based models rely on multi-channel EEG inputs,
increasing computational complexity and making real-time
deployment difficult, particularly in resource-constrained envi-
ronments such as wearable devices. Additionally, while these
models effectively extract latent features, they often require
large datasets for training, which are not always available in
medical applications. Moreover, while supervised classifiers
improve detection accuracy, they introduce additional compu-
tational complexity, making them less suitable for low-power
medical devices. Given these limitations, this study proposes
a lightweight channel-wise AE model combined with a K-
NN classifier to reduce computational complexity. By using
a channel-wise approach, the model minimizes parameter
requirements and enables real-time seizure detection, making
it a more efficient and practical solution for embedded medical
applications.

III. METHODOLOGY

This section presents the different steps to implement the
AE approach for epileptic seizure detection and EEG signal
generation. The section starts with the dataset used to perform
the analysis, goes on with the preprocessing pipeline to ensure
artefact-free and interpretable dataset ready for training, then
presents the model architecture and ends with the training
procedure.

A. Dataset

CHB-MIT open access scalp EEG dataset was used for
this work. It was collected from the Children’s Hospital of
Boston [12]. In this dataset, EEG multi-channel signals were
recorded upon 23 patients with intractable seizure, with 5
males and 18 females from age 2 to 22. The sampling rate of
each channel is 256Hz with 16-bit resolution. The beginning
and end of seizure periods were annotated by experts through
visual inspection. The majority of the data were recorded
with 23 electrodes placed according to the 10-20 international
system. In this experiment, only patients with 23 channels
were utilized.
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Fig. 1: Preprocessing pipeline

B. Preprocessing

Preprocessing organizes the EEG signal for effective train-
ing while also removing artifacts. Figure 1 illustrates the
preprocessing pipeline implemented on the CHB-MIT dataset.
The EEG recordings of the dataset are first filtered by a
Butterworth bandpass filter to maintain frequencies between
0.5-40 Hz. Then, each recording was normalized per patient
and per channel by converting them to follow a standard
normal distribution with zero mean and unit variance. This step
is essential to standardize the dataset and helps improve the
training efficiency. The standard score of each data, z, sample
is given by:

(1

where p and o are the mean and standard deviation of the
input data, respectively.

After normalizing the data, an equal number of seizure and
non-seizure segments were extracted to ensure dataset balance.
These segments were then further divided using a 1-second
non-overlapping moving window. The length of the sliding
window is usually selected between 1 and 30 s [1]. Finally,
the segmented windows were split into 70% training, 10%
validation, and 20% testing ensuring no data leakage between
patients (the training dataset has no common patient with the
validation and testing datasets).

C. Model Architecture

In this work, a separate AE model was implemented for
each individual channel, ¢, with ¢ = (1, 2, ..., 23). Figure 2 (a)
shows the proposed AE model for epileptic seizure detection.
Each channel from each window was separated and passed
through a separate AE model. The learned latent spaces of
each channel were concatenated and passed through a K-NN
classifier to perform binary classification. AE models have
256 input neurons, 128 hidden layer neurons, and 64 latent
space neurons. The number of hidden neurons and latent space
neurons was tuned via trial and error to reach the lowest
reconstruction loss.

The AE objective function is expressed as the MSE between
the input EEG samples and the reconstructed samples. The
goal of the AE is to minimize the objective function as much as
possible, so that the reconstructed signal closely approximates
the original signal. The loss function of the individual AE
model is given by:

2)

where N is the number of data points in the input (or
output layer), z; and Z; are the original channel input value
and the reconstructed channel output value, respectively. As
for the K-NN classifier, K=10 was chosen as the nearest
neighbors’ factor. Training this classifier was done among the
concatenated latent features of the 23 EEG channels.

For generating new data, Figure 2 (b) provides a detailed
illustration of the generation process. Test signals pass through
the trained encoders of all channels, after which random
Gaussian noise is added to the latent space vector. This
perturbation modifies the features, resulting in data that are
different from the original test data.

D. Training

The AE model was implemented using TensorFlow and
Keras libraries. Adam’s optimizer was used to minimize the
loss function with a learning rate of 0.0001. In addition, L2-
regularization and linear dropout layers (30% dropout) were
used to prevent overfitting. Linear activation functions for
each layer were used and an early stopping mechanism was
implemented to stop the training if the model did not improve.
The number of epochs was selected to 50 along with 32 batch
size

IV. RESULTS AND DISCUSSION

The evaluation metrics of the testing stage were split into
two categories:

o Signal quality metrics: they evaluate how well the gen-
erated signals look like the original input signals. These
include:

o MSE: it measures the average squared difference
between the original and generated signals. A lower
MSE indicates better reconstruction, and is given by
Equation (2).

o Pearson correlation coefficient (PCC): it measures the
linear relationship between original and generated signals
and is given by:

S (@i — 3)(d — 7)

pPCC =
\/Zf\il(‘% - 57)2\/2?;1(@'

— 175)2
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where N is the number of samples in each window, x; and
Z; are the original and reconstructed EEG data samples
respectively, while Z and & are the mean values of the
original and the generated signals, respectively.

o Classification metrics: we consider here the precision
since we focus on detecting the true positives (i.e., seizure
events) and is given by:

TP

precision = TP+ FP 4

where TP is the true positives, and FP is the false positives.
Table I presents the results of AE-based EEG data classifi-
cation and generation approach, evaluating both signal recon-
struction quality and classification performance. The results
obtained by the proposed approach indicate a strong ability
to generate new EEG signals with high fidelity, as reflected
by the PCC of 0.9580, which suggests a near-perfect linear
correlation between the original and generated signals. This
high correlation demonstrates that the AE effectively captures
and retains key signal features. In addition, the MSE of 0.4515
suggests that the generated signal differ in shape from the
original test signal, indicating a successful generation of new
and original-like signals. Figure 3 illustrates two generated
EEG signals from different channels.

Table II shows a comparison between our approach and
other methods in the literature. The methods were chosen

TABLE I: Signal generation quality metrics and K-NN
classification report

Metric Average Value (for all
channels)
Signal Quality Metrics
MSE 0.4515
PCC 0.9580
Classification Metric
Precision [ 96.69%

based on their explicit reporting of computational complexity.
The proposed model achieved significantly lower compu-
tational resource consumption (of 41.15k parameters) than
other DL-based epileptic seizure detection models. Compared
to complex architectures like STFT+CNN and FFT, wavelet
packet decomposition (WPD)+2D/3D-CNN, the AE-based ap-
proach drastically reduces the computational parameters, mak-
ing it more feasible for real-time and embedded applications.
Even when compared to raw-data-based models, such as deep
convolution autoencoder (DCAE)+Bi long-short-term memory
(LSTM) and 1D-CNN approaches, this AE approach still
maintains a much smaller amount of memory usage. This
suggests that the model retains essential EEG features while
using significantly fewer parameters. In terms of classifica-
tion performance, the proposed model achieved a precision
of 93.69%. Given the lightweight nature of the model, the
precision is acceptable. However, this result also highlights
the inherent trade-off between precision and computational
resource consumption. In models with higher computational
complexity, it is often possible to achieve slightly higher
precision by utilizing more complex architectures and larger
parameter sets. However, these approaches can be impractical
for real-time or embedded applications due to their high mem-
ory requirements. Thus, while the precision may be slightly
lower than that of more resource-intensive models, the trade-
off is justified by the model ability to operate efficiently in
real-world scenarios.
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TABLE II: Comparison with different methods
Work Method Precision | Parameters
(%)

[14] STFT+CNN - 143.7M

[15] FFT, WPD+ 2D- | 99.14 28.8M
CNN, 3D-CNN

[16] Raw data | 98.86 139.6k
+ DCAE +
BiLSTM

[17] Raw data + ID- | 99.78 113.8k
CNN

[18] Raw data + 1D- 99.62 106.8k
CNN

This work Raw data + AE 93.69 41.15k

V. CONCLUSION

This study proposed a lightweight AE-based model for
epileptic seizure detection, designed to balance precision with
computational efficiency. Using channel-wise autoencoders for
feature extraction and a K-NN classifier for classification,
the model achieved a precision of 93.69%, demonstrating its
effectiveness in distinguishing seizure and non-seizure events.
Additionally, the model’s ability to generate EEG-like signals
was validated through a high PCC of 0.9580 and an MSE of
0.4515, confirming the realistic nature of the generated data
that could be used in models where the dataset is limited. A
key advantage of this approach is its reduced computational
complexity, requiring only 41.15k parameters, significantly
fewer than traditional deep learning models, making it well-
suited for real-time applications in resource-constrained envi-
ronments such as wearable and embedded medical devices.

Despite promising results in generating new similar-original
signals, there is still room for improvement, particularly in
terms of classification precision. Although the model precision
is good, further enhancement could be achieved without affect-
ing its lightweight nature. Fine-tuning the latent space repre-
sentations within the autoencoder could optimize the feature
extraction process, leading to better classification without sig-
nificantly increasing computational requirements. Moreover,
pruning techniques could be employed to remove unnecessary
connections or neurons in the network, further reducing the
model size and improving its speed without losing much in
terms of classification precision. These approaches allow for
continued improvements in classification performance while
preserving efficiency, making the model even more suitable
for real-time and embedded applications, where computational
resources are often limited.
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