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Abstract—This study introduces a novel machine-learning
approach for predicting seizure development in neonates with
hypoxic-ischemic encephalopathy (HIE) using an Extreme Gra-
dient Boosting algorithm. The model employs a six feature set,
consisting of four features extracted from the first 12 hours
of single-channel EEG recordings and two clinical parameters
available from the newborn’s history charts. The proposed ML
model was trained/tested on a dataset of 61 neonates with
HIE, all born at a gestational age above 35 weeks. The model
achieved a Matthews correlation coefficient (MCC) of 0.712
and an area under the receiver operating characteristic curve
(AUC) of 0.885, outperforming the current state-of-the-art model,
which also incorporates clinical and quantitative EEG features.
These findings highlight the potential of the proposed method
for early long-term seizure risk prediction in neonates with HIE,
identifying those at risk of developing seizures after first 12 hours
of recording EEG.

Index Terms—machine learning, single-channel EEG, neonatal
seizures, HIE neonates

I. INTRODUCTION

Seizures are a significant concern in neonatology, occurring
in approximately 1 to 5 per 1000 live births [1]. Most of
them in the neonatal stage occur at the subclinical level,
which means that they cannot be detected without moni-
toring electroencephalography (EEG) [2]. Hypoxic-ischemic
encephalopathy (HIE), resulting from oxygen deprivation and
reduced blood flow to the brain [3], [4], is a leading cause
of seizures in neonates and a major contributor to long-term
disabilities such as cerebral palsy and developmental delays
[5]. Therapeutic hypothermia, introduced within the first 6
hours of birth, is the current standard treatment for moderate
to severe HIE, improving long-term outcomes and reducing
seizure burden [6]-[8].
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The gold standard for seizure diagnosis is continuous video-
EEG monitoring. However, its use is limited by the need
for specialized equipment and trained personnel, making it
inaccessible in many healthcare institutions [9]. Given these
challenges and the importance of early identification and
effective management of seizures to improve outcomes for
neonates with HIE, the role of artificial intelligence (Al) in
neonatal intensive care units (NICU) has increasing trend
[10]. The goal is to develop a machine learning model that
can identify neonates at high risk of developing seizures,
utilizing the existing EEG monitoring equipment in clinical
environments.

Early studies investigated correlations between various bio-
chemical parameters and neonatal outcomes like mortality,
HIE, and respiratory distress syndrome [11]. In [12], integrated
clinical parameters and biochemical measures, combined with
EEG background analysis were used. In recent years, machine-
learning (ML) has demonstrated potential for improving long-
term outcomes in neonates with HIE [13], [14]. These ML
models aim to predict which neonates are at a higher risk of
developing seizures in the future by leveraging both quanti-
tative and qualitative EEG features, either individually or in
combination with clinical parameters [9], [11], [12], [15], [16].
In [9], [17] potential of amplitude-integrated EEG (aEEG)
has also been exploder, a simplified trend-monitoring tool that
displays one or two channels of processed, time-compressed
EEG on a semilogarithmic scale [18].

The aim of this study is to develop a ML model for
early prediction of neonates with HIE who later develop
seizures, utilizing quantitative-EEG features extracted from the
first 12 hours of EEG recordings alongside selected clinical
parameters.
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II. DATASET

In this study, the dataset included infants born at >= 35
weeks of gestation, requiring continuous EEG monitoring due
to a high risk of developing seizures. It comprised single-
channel EEG signals recorded from parietal electrode locations
P3 and P4 at a sampling rate of 200 Hz, along with clinical and
biochemical data. All neonates included were diagnosed with
moderate to severe HIE and had EEG recordings of a minimum
duration of 12 hours, initiated within the first 6 hours of
life. The recordings were obtained using the Olympic Medical
CFM 6000 device (Natus Medical Incorporated, 5900 First
Avenue South, Seattle, WA 98108, USA) between January
2021 and October 2024 in the Neonatal Intensive Care Unit
of the Institute for Child and Youth Health Care of Vojvodina,
Novi Sad, Serbia.

The study included 61 neonates, classified into two groups
based on the presence and recurrence of neonatal seizures
occurring after the first 12 hours of EEG monitoring. The
first group included 44 neonates who either did not experience
seizures or had only a single seizure episode, while the
second group consisted of 17 neonates with multiple seizure
episodes. Two medical experts conducted the assessment and
classification of the neonates into these groups.

The clinical and biochemical data collected for each neonate
included the mode of delivery, the neonate’s gender, birth
weight (BW), gestational age (GA), Apgar scores at first
minute and fifth minute, assisted ventilation, pH, cardiopul-
monary resuscitation in the delivery room (CPR), standard
bicarbonate (stHCO3), lactate levels, base excess, glycemia,
and the age at seizure onset. Demographic characteristics,
both overall and stratified by class, are presented in Table 1.
Statistical significance (p < 0.05) was observed for HIE grades
between two observed groups of infants, which is consistent
with [9].

A 12 hour epoch of single-channel EEG recording was
extracted for each neonate for the analysis. These recordings
underwent quantitative analysis to detect patterns associated
with seizure activity.

III. PROPOSED METHOD

We propose a model aimed at identifying neonates with
HIE who are at risk of experiencing multiple seizures after
the first 12 hours of EEG recording. The objective is to detect
this vulnerable group by integrating clinical and quantitative-
EEG features using ML models. The proposed approach incor-
porates quantitative EEG features extracted through singular
value decomposition (SVD) and spectral analysis of 12-hour
EEG recordings. Prior to feature extraction, the raw EEG sig-
nal, sampled at 200 Hz, was preprocessed by using bandpass
filter with bandpass from 0.5 to 30 Hz [19]. In addition to these
features, two clinical parameters, glycemia and the Apgar
score at the fifth minute, were selected for inclusion because
they contributed to the higher performance of the model. The
Apgar score is a quick clinical assessment of a newborn’s
health based on heart rate, respiratory effort, muscle tone,
reflex irritability, and skin color, typically evaluated at 1 and 5

TABLE I
STUDY SAMPLES DEMOGRAPHICS AND CLINICAL CHARACTERISTICS
All infants Class 1 Class 2
(n=61) (n=44) (n=17) p-value
Gestational age
of birth (weeks), (3187659) (318'758‘3 (13695) 0.44¢
mean (SD) : : :
Birth weight (g), 3183.279 3152.95 3261.76 0.51%
mean (SD) (582.76) (575.45) (611.99) '
Male gender, 36 23 13 0.15°
n (%) (59.02) (52.27) (76.47) :
Mode of delivery,
n (%)
mgr’l’ﬁigffery 25 (40.98) | 20 (45.45) | 5(29.41)
Assisted vaginal 6 (084) 3(6382) 3 (17.65) 0.58b
delivery 4 (6.56) 3 (6.82) 1 (5.88) .
Elective cesarean 26 (42.62) | 18 (40.91) | 8 (47.0.6)
section
Emergency
cesarean section
HIE grade, n(%)
Mild 22 (36.07) | 21 (47.73) 1 (5.88)
Moderate 28 (45.90) | 19 (43.18) | 9 (52.94) < .002°
Severe 11 (18.03) 4 (9.09) 7 (41.18)
Emergency

Note: p-Value < 0.05 was considered statistically significant
2p-Value from independent sample t test for parametric data
for categorical data
bp-Value from chi-square test for categorical data or Fisher’s exact test

minutes after birth [20]. Glycemia refers to the concentration
of glucose in the blood, which can indicate metabolic stability
or distress in neonates [21]. Although each parameter had low
individual discriminative power, together they contributed to
a more effective classifier.

A. Spectral EEG Features Extraction

Spectral flatness and spectral entropy have been shown as
useful features. Both features were derived based on the Power
Spectral Density (PSD) estimation using Welch’s method, on
the entire 12 h or EEG signals.

Spectral flatness (S), also known as Wiener entropy, quan-
tifies the flatness of a signal spectrum [19]. It is calculated as
the ratio of the geometric mean and the arithmetic mean of
the PSD. The spectral flatness was estimated following:

- exp (% S K log PWelch(fi)) W
B L Zfil Puveren(f3)

where K is the number of frequency bin, and Pyern(f;) is
the PSD at frequency f;. PSD was estimated by Welch’s
method, to minimize spectral leakage we applied Hamming
window. The EEG signal segment length was 8 X fs (sampling
frequency), corresponding to 8 seconds of signal, and 75%
overlap between segments was employed to ensure a smoother
spectral estimate.

Spectral entropy quantifies the level of randomness or com-
plexity within a signal [22]. The method involves computing
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the Shannon entropy of the PSD, as given by the following
equation:

N
H(pweich) = — Y _ weteh(£:) 108 pweten (i) 2
i=0
where pweien(fi) is the normalized value of the PSD at
frequency f;.

B. EEG Features Extraction Based on Singular Value Decom-
position

Singular value decomposition (SVD) has shown as useful
for identifying vulnerable groups of infants, applying an aEEG
[17], and short-term seizure prediction for pediatric subjects
based on multichannel EEG [24]. In this study, we investigate
the potential of the singular value of single-channel EEG. The
entire 12 hour EEG can be presented as a matrix X € RM*xL
where M corresponds to the number of non-overlapping
EEG epochs, and L represents the number of samples, SVD
decomposes X as follows [24]:

X=U-2-V'=> "0;-U;- Vi, r<min(M,L) (3)
i=1

where T denotes transpose, r is rank and: U € RM*M jg
an orthogonal matrix with columns U; - the eigenvectors
of the product X - X7; ¥ € RM*L is a diagonal matrix
containing singular values o; that indicate the significance of
each component; V € RY*L is an orthogonal matrix with
columns V; - the eigenvectors of the product A7 - A.

Shannon entropy of singular values was estimated follow-
ing:

k
H=—> pilogp )
i=1

where p; = o0;/ Z?:1 o; represents the normalized singular
values, k represents number of singular values used. Singular
values on the diagonal of matrix S are sorted in the descending
order and it was empirically proved that the first five represent
dominant signal energy carriers.

Spectral decay is an indicator of signal energy concentra-
tion. It was calculated as the ratio of the first singular value
to the sum of all five singular values:

01

Sdecay = =<k (&)

i=17i
C. Machine Learning (ML) Classifier

A ML model was developed to predict infants with HIE
who experienced more than one seizure after the first 12
hours of EEG recording. The model combines quantitative
EEG features and clinical features concatenated into a single
vector per subject. It was built using the Extreme Gradient
Boosting (XGBoost) algorithm, which is based on gradient-
boosted decision trees introduced by Chen and Guestrin [25].
Leave-one-out cross-validation approach was used due to the

small dataset used (<200). The depth of the decision tree was
optimized from the data, with parameters selected using a grid
search approach within a nested 10-fold cross-validation.

D. Model Evaluation

Performance of the machine learning models was assessed
using the Matthews correlation coefficient (MCC) [26], which
has shown to be effective for imbalanced datasets. We also
estimated the performance of the ML model using following
metrics: area under the receiver operating characteristic curve
(AUC), sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). The binary classification
performance was calculated using the following formulas:

MCC TP-TN—FP-FN ( )

- \/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

TP

Sensitivity = TPTFN )
Speci ficity = FPZ;—% (8)
Py =t ©)
NPV = (10)

where TP represent true positives, TN true negatives, FP
false positives and FN false negatives. TP corresponds to HIE
infants who later develop seizures.

IV. RESULTS

Table 2 compares the performance of all current state-of-
the-art methods to the best author’s knowledge. Pavel et al.
extracted 41 features (13 clinical and 28 quantitative EEG
features), based on golden-standard multichannel EEG. In
our previous work [17], clinical data and an aEEG dataset
(only 47 HIE infants EEG recordings were available at the
time) were used with a total number of 8 features (6 clinical
and 2 quantitative aEEG features). The proposed method
outperformed the performances of our ML model-based aEEG
[17], and most of the performance of the clinical-quantitate
ML model for multichannel EEG (described in [9]).

However, a fair comparison of the proposed model is limited
by the difference in data set size (all compared datasets
are small < 200 samples). The ML model in [9] was a
trained/tested on dataset collected from multiple European
centers (162 HIE infants), whereas the proposed model was
developed using a dataset of 61 HIE infants from one center.
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TABLE II
COMPARISON OF PERFORMANCE MEASURES FOR DIFFERENT MODELS

ML model Feature | Dataset MCC AUC Sensitivity | Specificity | PPV | NPV
number size
Quantitative - EEG @ 0.473 0.73
(CatBoost) 91 28 1621 0337 10 0.612) | (0.671 to 0.811) 69.8 8.9 61.7 | 843
__ o)
Chnmdlanig;%igiym BT oy 4l 162 (Q37g€j%b45) (07083?%833) 159 780 625 e
Clinical and quantitative - aEEGP
i [17] 8 47 0.495 0.758 60.0 87.5 692 | 823
Proposed (XGBoost) method 0.612 0.852
(quantitative EEG model) 4 61| (0371 t0 0.809) | (0.754 to 0.934) 8.8 955 833 | 857
Proposed (XGBoost) method ¢ 0.712 0.885
(clinical and quantitative EEG model) 6 6l (0.523 t0 0.877) | (0.803 to 0.951) 39.0 Lo ey 863

2EEG=multichannel EEG
baEEG=single channel EEG (P3-P4)
“EEG=single channel EEG

V. DISCUSSION

The proposed clinical and quantitative EEG-based model
for predicting seizure risk in neonates with HIE, demonstrates
improved performance compared to the models which, to
the authors knowledge, currently achieve the highest reported
performance in the literature [9], [17]. The proposed model
achieved higher performance by using six features, out of
which two are clinical and four quantitative EEG features.
The small database size also constrains the complexity of the
machine learning model and increases the risk of overfitting.
To mitigate this, cross-validation was employed to provide a
more reliable assessment of performance.

Pavel et al. [9] proposed ML models incorporating quantita-
tive and qualitative EEG/aEEG features, either independently
or in combination with clinical parameters. The proposed
model outperformed it across most of the metrics, reporting
an MCC of 0.712 (0.523 to 0.877) and an AUC of 0.885
(0.803 to 0.951). However, a direct comparison with the model
proposed in [9] remains challenging. Key distinctions include
variations in dataset composition, sample size (both studies
analyzed relatively small datasets of <200 cases), the duration
of EEG epochs, and the type of device and the number of
channels for collecting (a)EEG. To address these limitations,
we also compared our model with our previous work [17],
which utilized aEEG. aEEG primarily captures time-domain
features, whereas the proposed model predominantly utilizes
frequency-domain features extracted from EEG.
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