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Abstract—Functional connectivity (FC) analysis is crucial for
understanding neuroplasticity in stroke rehabilitation. Neuro-
feedback (NF) training has shown promise in facilitating recov-
ery, but its whole-brain effects remain poorly understood due
to limitations in traditional FC analysis methods. Many studies
rely on region-of-interest (ROI)-based approaches, which restrict
analysis to predefined regions, or whole-brain mass univariate
tests, which suffer from the multiple comparisons problem. In
this study, we apply Network-Based Statistics (NBS), a graph-
theoretic signal processing approach, to identify data-driven FC
changes following NF-based stroke rehabilitation. Using fMRI
data, we detected two significant network components: one within
the somatomotor network, reflecting expected motor recovery
processes, and another within the default mode network (DMN),
highlighting broader neuroplasticity effects. Our findings validate
NBS as a robust tool for unbiased, whole-brain connectivity
analysis, offering new insights into the distributed impact of NF
training in stroke rehabilitation.

Index Terms—fMRI, Functional Connectivity, stroke rehabili-
tation, Network Based Statistics.

I. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) provides a
powerful tool for studying brain function by analyzing patterns
of functional connectivity (FC), which measure statistical
dependencies between different brain regions. Understanding
how FC evolves over time is crucial for assessing neuro-
plasticity, particularly in stroke rehabilitation, where recov-
ery depends on the brain’s ability to reorganize functional
networks [1, 2]. Moreover, this process is not always benefi-
cial—maladaptive plasticity can lead to inefficient connectivity
patterns that may hinder recovery rather than support it [3].
Identifying both adaptive and maladaptive changes is therefore
essential for refining rehabilitation strategies.

In this work, we focus on the study of neurofeedback (NF)-
based stroke rehabilitation. NF is a promising intervention
that enables patients to self-regulate brain activity, and while
it has been shown to drive neuroplasticity [4], its effects
on whole-brain connectivity remain poorly understood. Many
studies assessing the effect of NF-based neurorehabilitation
in stroke rely on region-of-interest (ROI)-based approaches,
where specific brain areas are selected based on prior hy-
potheses about their role in recovery [5, 6]. While this method
provides valuable insights, it may overlook broader network-
wide plasticity, particularly in regions not explicitly targeted
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by rehabilitation. Whole-brain FC analysis offers a more
comprehensive perspective by capturing connectivity changes
across the entire brain. However, analyzing a large number of
connections introduces statistical challenges, requiring correc-
tion for multiple comparisons, which can reduce sensitivity
to meaningful effects—particularly when changes occur in
distributed networks rather than in isolated regions.

To address these limitations, we employ Network-Based
Statistics (NBS) [7], a graph-based technique that identifies
whole-brain subnetworks exhibiting significant connectivity
alterations. By clustering interconnected connections, NBS
improves sensitivity to distributed connectivity changes while
rigorously controlling for multiple comparisons at the net-
work level. Importantly, NBS involves fewer methodologi-
cal decisions compared to other whole-brain graph metrics,
thus enhancing the reliability and interpretability of results.
Given that NF-driven neuroplasticity likely induces subtle and
distributed connectivity changes extending beyond predefined
regions, NBS is ideally suited to provide an unbiased and
statistically robust assessment of NF-induced neuroplasticity.

The primary contributions of this study are:

o Validation of NBS in a neurorehabilitation setting,
demonstrating its feasibility for studying whole-brain
functional reorganization.

o Demonstration that NBS can be effectively applied in ex-
ploratory clinical studies without requiring pre-selection
of specific connections.

« Identification of two key network components affected by
NF training providing insights into rehabilitation-induced
neuroplasticity.

II. RELATED WORKS

Analyzing FC in fMRI presents several challenges, partic-
ularly in the context of neurorehabilitation. Stroke induces
widespread changes in brain networks [1], and effective re-
habilitation strategies depend on our ability to accurately
measure and interpret these changes. Various signal processing
techniques have been developed for FC analysis, each with
its own advantages and limitations. At the core of these ap-
proaches lies a trade-off between statistical power and spatial
specificity. Ideally, we want to detect all connectivity changes
induced by rehabilitation, but given the high dimensionality
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of whole-brain FC data, where thousands of connections
are analyzed simultaneously—controlling for false positives
without missing meaningful effects is a major challenge.

A. ROI-based Approaches: reducing statistical complexity at
the cost of flexibility

A widely used solution to mitigate the multiple comparisons
problem is to focus on predefined regions of interest (ROIs)
or specific connections [8, 9, 10], drastically reducing the
number of statistical tests. Many studies in stroke rehabilitation
adopt this approach by selecting for example motor-related
brain areas [9] based on prior knowledge of stroke recovery
mechanisms. While this hypothesis-driven strategy improves
statistical power and ensures biological interpretability, it risks
overlooking network-wide plasticity, particularly in areas that
were not explicitly targeted but still contribute to functional
reorganization.

B. Whole-brain edge-wise analysis: the multiple comparisons
challenge

To capture connectivity changes beyond predefined ROIs,
we could adopt whole-brain FC analysis, evaluating all pair-
wise connections between brain regions. This allows for a
more exploratory, data-driven assessment of neuroplasticity.
However, this comes at the cost of an extreme multiple com-
parisons problem: analyzing thousands of connections requires
stringent statistical corrections (e.g., Bonferroni [11], False
Discovery Rate (FDR)[12]), which often reduce sensitivity
and may lead to false negatives. While this method maintains
spatial specificity, its reliance on independent statistical tests
fails to account for interdependencies between connections,
which are critical in network-based brain function.

C. Global graph metrics: summarizing connectivity at the
expense of specificity

Some studies bypass the multiple comparisons issue by
summarizing whole-brain connectivity into single global val-
ues using graph-theoretic metrics such as modularity, global
efficiency, or small-worldness [13, 14]. These approaches
provide valuable insights into overall network organization
and allow for a more computationally efficient analysis. How-
ever, they suffer from a loss of spatial specificity, as they
do not identify which connections or subnetworks drive the
observed effects, and may oversimplify complex neural dy-
namics, potentially masking clinically meaningful connectivity
alterations. Moreover, variability in methodological choices,
such as thresholding and network definitions, further raises
concerns regarding their reliability and interpretability [15].
This makes them less suited for studies seeking to localize
specific connectivity changes induced by stroke rehabilitation
interventions.

D. NBS

To balance statistical power and spatial specificity, NBS
[7] has been proposed as an alternative that detects network-
level connectivity changes rather than testing individual con-

nections separately. Instead of treating each edge as indepen-
dent, NBS clusters interconnected edges that show significant
FC changes, allowing for the identification of subnetworks
rather than isolated connections. By using permutation testing,
NBS controls for multiple comparisons at the network level,
improving sensitivity to widespread neuroplasticity effects
while maintaining statistical rigor. Moreover, NBS requires
relatively few methodological decisions, reducing the potential
for variability and increasing the robustness and replicability
of its findings.

Originally introduced for detecting connectivity disruptions
in cognitive and psychiatric disorders, NBS has shown promis-
ing results in identifying functionally relevant networks in
neuroimaging studies [7, 16]. However, its application in
stroke rehabilitation remains limited, despite its potential to
uncover both adaptive and maladaptive plasticity.

III. METHODOLOGY
A. Dataset

This study is based on data from a randomized controlled
trial conducted at Rennes University Hospital [6], designed to
evaluate the effects of NF training in stroke rehabilitation. The
trial included two groups: one that underwent NF training (n
= 15) and a control group that did not (n = 15). In this paper,
we focus specifically on the NF group.

Eligible participants were 18 to 80 years old, had a uni-
lateral supratentorial stroke at least six months prior, and had
an FMA-UE score between 22 and 53, indicating moderate
motor impairment. Additionally, participants were required to
have intact corticospinal tract integrity, assessed via fractional
anisotropy estimated using Diffusion MRI. Exclusion criteria
included MRI contraindications, severe vascular lesions, or
prior neurological conditions.

The five-week NF training program consisted of five bi-
modal EEG-fMRI NF sessions, nine unimodal EEG-NF ses-
sions, and one motor imagery (MI) fMRI session both before
and after NF training. During NF training, participants modu-
lated their brain activity in real time, with feedback computed
based on activity in the supplementary motor area (SMA) and
the primary motor cortex (M1). For this study, we specifically
analyze fMRI data from the pre- and post-training MI sessions
to assess NF-induced changes in functional connectivity.

B. Data preprocessing

Anatomical preprocessing was performed using fMRIPrep
23.0.0 [17], a widely used pipeline for fMRI data. The
T1-weighted image underwent bias field correction with
N4BiasFieldCorrection [18] and was then skull-stripped using
the ANTs Brain Extraction workflow. Brain tissue segmen-
tation into cerebrospinal fluid (CSF), white matter, and gray
matter was performed with FAST (FSL 6.0.5.1) [19], while the
brain surface was reconstructed using FreeSurfer 7.3.2 [20].
Spatial normalization was applied using ANTsS to align the data
to MNI152NLin2009cAsym space [21], with a cost function
masking approach to prevent lesion-induced warping [22].

1523



Connectivity pipeline

Connectivity

post-intervention

1
|
Parcellation Connectivity i pre-intervention
— ! —_— ——
| - i | ==
I e ! I, -
@ I . |':-II_ -
. ey ] I
| e 5 S
| .
y I
‘ —r | -
1 | ————
1 l -t Sl
i M T-test on
i l: 1 . each edge
i i g
i I
i Connectivity
|
1
1
i
!
1
1

Fig. 1.

get p-value per component

- .
'a " I 1 x K X
f A
—r————— I.’ Fe ™ — ————
L f ¥ i
I | - Iy -
| 1{ i
I - _ L I
Get connected \.‘ :' = =—% T-teston Get connected

components | each edge components

get NULL distribution

Methodological pipeline for identifying functional connectivity changes using NBS. In the preprocessing pipeline illustrated in green, the brain

is parcellated using the Schaefer atlas, and functional connectivity matrices are computed for both pre- and post-intervention data. A paired t-test is then
applied to each connection in the upper triangular part of the symmetric connectivity matrices, generating a test statistic for each edge. An initial threshold
of p < 0.001 is applied, creating a binary adjacency matrix where each connection is assigned 1 (significantly different pre- vs. post-intervention) or 0 (not
significant). Connected components are then identified using graph-theoretical algorithms, grouping interconnected suprathreshold edges into subnetworks. To
assess statistical significance, K permutations are performed by randomly shuffling subject labels and recomputing the test statistics and component structures.
This generates a null distribution of component sizes, against which the observed components are compared. Components with corrected p < 0.05 are

considered statistically significant

Functional MRI preprocessing was conducted using fM-
RIPrep followed by fMRIStroke, a dedicated pipeline for
stroke-related fMRI processing [23]. Motion correction was
performed using MCFLIRT (FSL) [24], and slice timing cor-
rection was applied using AFNI 3dTshift [25]. The functional
images were co-registered to the T1-weighted reference using
boundary-based registration (bbregister, FreeSurfer) [26] and
then spatially normalized to MNI152NLin2009cAsym space
with ANTs.

Denoising was performed using a combination of standard
and stroke-specific confound regression. Physiological and
motion-related confounds were removed using CompCor [27],
with nuisance regressors including global signal, motion pa-
rameters, tissue signals (white matter and cerebro spinal fluid),
and anatomical CompCor components. Additional stroke-
specific confounds were computed with fMRIStroke, incorpo-
rating lesion-specific tissue regressors, Independent Compo-
nent Analysis (ICA)-based artifact removal excluding compo-
nents overlapping with lesion masks [28], and hemodynamic
lag estimation to make sure participants do not have excessive
delays exceeding one second in the affected hemisphere [29].

C. Functional connectivity

FC was computed using Nilearn [30]. The Schaefer 400-
region atlas was used for brain parcellation, but due to a
reduced field of view (FOV) in the fMRI acquisition, only
200 regions were included in the analysis. The regional time
series were extracted by averaging the BOLD signal within
each parcel. Pairwise Pearson correlation was computed for
all region pairs, and Ledoit-Wolf shrinkage [31, 32] was
applied to improve covariance estimation. The resulting 200

x 200 functional connectivity matrix represented whole-brain
connectivity patterns for each subject.

D. NBS

NBS was used to identify significant changes in functional
connectivity pre- and post-rehabilitation while controlling for
multiple comparisons (figure 1). A paired two-sided t-test
was applied to each connection, with an initial threshold of
p < 0.001 to identify significant connectivity changes. Con-
nected components were then formed, and their significance
was assessed using 5,000 permutations, with a threshold of
p < 0.05 for significance. The analysis was performed using
the Brain Connectivity Toolbox implementation of NBS [33].

IV. RESULTS AND DISCUSSION
A. NBS identified two key networks

NBS identified two significant components showing changes
in functional connectivity following NF training. The first
component primarily involved 42 regions of interest (ROIs)
and 48 connections mainly within the somatomotor network,
as defined by the Yeo 7-networks [34] parcellation (Fig-
ure 2.A), with a significance level of p = 0.0006. The second
component consisted of 18 ROIs and 23 connections, localized
within the default mode network (DMN) (Figure 2.B), with a
significance level of p = 0.003.

Both components exhibited a decrease in connectivity
strength following intervention, indicating a reduction in net-
work interactions post-training. This suggests that NF-based
rehabilitation induced widespread modifications in whole-
brain functional connectivity, affecting both motor-related and
non-motor networks.

1524



A. Identified component Mean connectivity changes
W, W
LH = RH LH .= RH
y. 0
A £ Aconnectivity
/ / Moo
i = f 0.05
i i 0.00
-0.05
-0.10
\ \ -
‘-\._\ '\'._
N g

Network labels (Yeo Networks)

® L-default e |-dorsalattenton ® L-frontoparietal ®

® R-default R-dorsal attention R-frontoparietal

Fig. 2. Significant network components identified using NBS. Lightning bolt

B. Identified component Mean connectivity changes
I ha
“LH - RH CH e RH
o e
__r” y 7 Aconnectivity
f. :1(- [ | 040
f | 0.06
' 0.00
-0.05
5 N - -0.10
.\-\ \ v \-‘ \
""x_“ \__‘_‘
L-somatomotor L-ventral attention ® L-visual
R-somatomotor R-ventral attention R-visual

represents lesion side, LH: Left Hemisphere, RH: Right Hemisphere (A) First

significant component. (B) Second significant component. Left panels: Circular connectivity graph displaying the detected subnetwork, with edge colors
indicating the corresponding Yeo 7-network affiliation. Right panels: Circular connectivity graph of the same subnetwork, where edge colors represent the

magnitude of mean connectivity changes (pre- vs post-intervention).

B. NBS identifies functionally relevant networks and meaning-
ful changes

The fact that NBS detected well-established functional
networks—the somatomotor network and the DMN—rvalidates
its effectiveness in this setting. These networks are commonly
recognized in functional neuroimaging, confirming that the
identified FC changes are biologically meaningful rather than
statistical artifacts.

The reduction in motor network connectivity may reflect a
refinement in network efficiency, potentially reducing the com-
pensatory hyperconnectivity often observed in early recovery.
Similarly, while the DMN is usually less active during tasks
[35], stroke can lead to aberrant activation [36], potentially
disrupting cognitive-motor processes. Its post-rehabilitation
decrease may therefore indicate a restoration of typical brain
dynamics, allowing for more efficient engagement of motor
networks during motor imagery. While further work is needed
to fully interpret these changes, the alignment of detected net-
works with established neurophysiological systems reinforces
the applicability of NBS for unbiased whole-brain FC analysis.

C. NBS reveals connectivity changes beyond targeted regions

The results show that NF-induced changes extended be-
yond predefined motor regions, affecting large-scale brain net-
works. This underscores the need for whole-brain connectivity
analysis and the advantages of data-driven approaches over
hypothesis-driven methods that may overlook network-wide
effects. These findings validate NBS as an effective tool for
detecting distributed neuroplasticity in neurorehabilitation.

D. Limitations and perspectives

While this study demonstrates the effectiveness of NBS in
identifying neurofeedback-induced changes in stroke rehabili-
tation, several limitations should be acknowledged. First, sam-
ple size is a critical factor in fMRI studies, as neuroplasticity
varies significantly across individuals. Although NBS controls
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for multiple comparisons at the network level, a larger cohort
would improve statistical power and allow for more robust
generalization of the findings. Future studies should incorpo-
rate larger and more diverse stroke populations to account
for inter-individual variability in recovery patterns. Second,
while NBS detects significant connectivity changes, it does not
directly assess their functional relevance. A deeper integration
of clinical outcome measures, such as motor function scores
or behavioral improvements, would help establish a clearer
link between network reorganization and functional recovery.
Longitudinal studies tracking both connectivity changes and
clinical progress over extended periods could provide more
insight into the long-term effects of NF training. Despite
these limitations, this study highlights NBS as a valuable
tool for unbiased, data-driven detection of functional network
reorganization. Expanding on these findings with larger, and
control-based studies will further refine our understanding of
NF-induced plasticity and optimize its clinical application in
stroke rehabilitation.

V. CONCLUSION

This study applied NBS to analyze whole-brain FC changes
following NF training in stroke rehabilitation. NBS identified
two significant network components: the somatomotor net-
work, associated with motor execution, and the DMN, involved
in higher-order cognitive and motor processes. The observed
decrease in connectivity strength suggests a refinement of
network interactions, supporting the idea that stroke recovery
involves network optimization rather than global connectivity
increases.

These findings highlight the value of NBS as a tool for de-
tecting data-driven, network-wide FC changes beyond prede-
fined regions. Unlike traditional ROI-based approaches, NBS
enables exploratory whole-brain connectivity analysis while
controlling for multiple comparisons at the network level,
making it well-suited for studying distributed neuroplasticity.
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