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Abstract—The U-Net is one of the most fundamental archi-
tectural advancements in the deep learning era. It is a crucial
tool for image segmentation, especially for biomedical modalities.
The research community seems to interpret the effectiveness of
neural architectural search (such as the nn-U-Net) as evidence
that architectural enhancements proposed since its debut are
mostly unnecessary. We argue that there are still network-in-
network primitives that can be leveraged to further enhance
its performance, focusing on the squeeze-and-excitation (SE)
pathway specifically in this paper. Specifically, we study its use
of global descriptors, since it should be at odds with the spatial
resolution required for dense-prediction tasks. It is theorized in
the literature that performance is probably gained from some
implicit ability of the learned excitations to filter supposedly
uninformative channels during training.

We explain this almost unreasonable success through an analy-
sis of the empirical estimates of the excitation covariance matrix.
Our analysis also directly contradicts the above conjecture — the
most effective SE approach actually displayed the less extreme
filtering behaviour, weighing all channels much closer to the mean
(0.5). Our experiments are conducted in three diverse, staple
biomedical modalities: dermoscopy, colonoscopy, and ultrasound.

Index Terms—U-Net, Semantic Segmentation, Biomedical
Imaging, Squeeze-and-Excitation, Attention

I. INTRODUCTION

Introduced in 2015 [1], the U-Net quickly became one of
the most effective deep learning architectures for biomedical
applications [2]. Today, the machine learning community still
finds success for this architecture for many tasks, from re-
construction [3], super-resolution [4], to generative diffusion
models [5].

Naturally, several enhancements were proposed to the orig-
inal U-Net, from Transformer encoders, enhancing skip con-
nection design and connectivity, to the addition of several at-
tention models to complement the limitations of convolutional
layers [2].

Notwithstanding, recently it has been proposed that much of
these research efforts were not effective given a proper hyper-
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Fig. 1. (Top) Excitation analysis of excitation magnitude on a ImageNet-
1000 classification task, adapted from [8]. (Bottom) The number of principal
components that capture 6 = 0.95 of the excitation variance on a binary
segmentation task on the ISIC-18 dataset.

parameter configuration (i.e, depth, number of filters, data-
augmentation, etc.) of the baseline U-Net [6]. This motivated
the proposal of neural architectural search algorithms such as
the nn-U-Net, which is currently at the forefront in terms of
performance for the medical imaging decathlon [6], [7].

We contend that despite these impressive results, one should
not simply discard any additions to the baseline architec-
ture as being unecessary “bells and whistles”. In fact, as
initially shown by [9], network-in-network patterns such as
the squeeze-and-excitation (SE), not only have a proven
track record for classification tasks [8], but also generalize
remarkably well for segmentation tasks. Unfortunately, their
effectiveness is not well understood at a fundamental level
by the machine learning community. The most common
conjecture is that SE modules probably filter uninformative
channels [9]-[12]. However, we contend that this statement
lacks any concrete meaning: does this imply setting the
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response of entire channels deterministically to 0, or is this
filtering somehow dependent on the input? Is this behavior
consistent across different SE architectures? Why does such
an aggressive bottleneck work in dense prediction tasks that
require high spatial resolution? Empirically, each excitation
becomes more class-specific with the depth of the network
for classification [8] (see Fig. 1), does this phenomenon also
occur in segmentation?

A. Contributions

In this work, we lay the first stepping-stones towards
understanding the almost unreasonable effectiveness of these
approaches by studing several SE architectures [9], [13]-[15],
by using them to augment a fixed baseline U-Net for three
different binary medical image segmentation modalities.

Since each pixel has its own class, using class-conditional
information becomes infeasible in contrast with classification
tasks [8] (see Fig. 1). Instead, we study the characteristics of
the empirical covariance matrix of the excitations and how
their principal components relate to the number of classes for
each segmentation task.

We find that the skip-connections effectively propagate se-
mantic information by implicitly reducing the dimensionality
of encoder layers closer to the input. Our results indicate that
the most successful architectures offer pretty mild recalibration
with some degree of instance variability, and directly contra-
dict the argument that excitations are filtering each channels
(at least, aggressively so).

B. Related work

Squeeze-and-Excitation (SE) Networks were introduced
in [8] in order to address the limited receptive field while
simultaneously modeling inter-channel dynamics in intermedi-
ate convolutional layers for the context of image classification.
The activations are recalibrated (i.e., excited) according to a
channel attention function, g, which is a non-linear map of a
vector of global channel descriptors. This naturally induces a
global receptive field for each layer of a convolutional neural
network (CNN). Several works extend this framework with
more intricate statistical descriptors or by redesigning the
attention function g [12]. The style-based recalibration [13]
(SRM) includes an additional global standard deviation pool-
ing, alongside a channel-wise dense layer in the computation
of g. In [14], global average pooling (GAP) is shown to
be statistically equivalent to the lowest frequency component
of the 2-dimensional Discrete Cosine Transform (DCT). The
authors showed better performance compared to SE [8] by
allowing more filters from the DCT basis to pool the responses
in a multi-resolution way. A more extensive survey can be
found in [12].

Surprisingly, although ¢ typically describes each channel
by means of global statistics, SE has shown to improve
performance in segmentation for medical imaging tasks. In [9]
showed that SE layers the performance of a baseline U-Net.
Recently, [15] showed improved results when computing g as

a function of the expected Holder exponent for each channel,
a quantity that relates to the fractal dimension.

Other research efforts were conducted to further expand the
SE module for medical image segmentation [9], [16], but these
often include spatial attention functions and/or designed for 3D
segmentation, and are thus out-of-scope for the preliminary
postulates of this paper.

II. METHODS

We will denote a CNN encoder given an input tensor X € I
as fi(X) = fio...o fao f1(X)), so that f; : I;_; — T, for
I, = REXWixCi  We will refer to f; as the I-th layer of f,
so that [ € {1,...,L}. finwe is the c-th channel, at position
(h,w) of the I-th layer. Assume these indexing symbols are
consistent throughout and that their omission implies tensor
slicing, e.g. fic = fi.... We will study four representative SE
solutions in the context of image segmentation that have found
success in the medical imaging literature.

A. Squeeze-and-Excite (SE) [8]

Squeeze-and-excitation networks were originally studied
by [9], and we will onward use the the acronym cSE (channel
SE) for consistency with medical image segmentation litera-
ture, even though c¢SE and SE are functionally equivalent.

The output of each encoder layer f; is characterized by a
“squeeze” function g : I; — R such that:

9(fi(X)) = o(W2 ReLU(W,GAP(f/(X)))), (1)

where GAP stands for spatial global average pooling, W €
RL%JXC% W, € RCIXL%J, for some 1 < s* < (), and o is
the sigmoid activation function. The output of the encoder at
level [ for [ < L — 1 thus becomes:

FPEX) = fi(X) © g(fiulX)), 2
where © is the (broadcastable) element-wise product.

B. Style-based Recalibration (SRM) [13]

Style-based Recalibration (SRM) integrates the standard
deviation as a proxy for style in the context of style-transfer.
Denoting a global standard-deviation pooling layer as GSP,
the squeeze function is defined as:

9(fiX)) = ¢([GAP((f1(X))), GSP((fu(X))]),  (3)

where ¢ : RC*2 — R is a learnable linear map. An
additional batch-normalization layer is applied to g.
C. Frequency Channel Attention (FCA) [14]

Frequency channel attention splits the C; channels of each
layer [ in k groups such that [f;(X)1,..., fi(X)x] = fi(X).

Then the two-dimensional discrete cosine transform (DCT)
filters are pre-computed and stored on a tensor B such that

- h 1 Tw 1
BLJ = L ) — S| —— ] - . 4
Uhow cos(Hl (z+2>)cos<Wl (j+2>> (@)

The squeeze operation is performed for each of the k groups

gLk =D [X)eB%, )
h w
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ix,Jr depend on k since there is a distinct DCT
basis for each of the k& groups g¢(fi(X)) =
a(Wlg(fi(X)1, -, g(fi(X))x]), so that W € R,

D. Monofractal Recalibration [15]

Monofractal recalibration [15] considers each activation
map f;. has a two-dimensional self-similar measure ;. char-
acterized by distinct singularity exponent «;.(-) which can be
determined as follow:

o (tog(B: @) — pig 3 logmBre(a)
> (log r— ITl%I >, log r’) .

For discrete, finitely many r > 1 € R, B,(x) is a square of
side  centered around z € R”*W_ Then let

e = [a( finwe(X)) : for each (h,w) at resolution {]. (7)

Then, the squeeze function is such that g(f;(X)) := g(&)),
where q; is the output of a batch-normalization layer over «;.

E. The Linear Excitation Threshold

As argued in the original paper SE [8], for the task of image
classification, empirically the activations induced by g become
more class-specific as [ — L, becoming (at least) visually
separable before the output layer (see Fig. 1). However, for
image segmentation, each pixel maps to its own class, and this
relationship becomes impossible to estimate given the lack of
spatial resolution on the excitation maps g.

A linear estimation of the the covariance of the excitations
g(f1) is thus set forth, so we solve for a surrogate A € R ¢
such that A := —L-g(f,)Tg(f,) is the empirical covariance
matrix and n is the size of a validation set. Note that this
aligns with recent trends in deep learning theory that state that,
under mild assumptions, deep representations tend to display
linear behaviour after training [17], [18].

Denote Ay, as the singular value decomposition of A using
only its top k singular values, then for ¢ small enough we
define the linear excitation threshold (§ € (0, 1]) is given by

argmink| klr > 6. )

In other words, for a given 9, if & — C, we say that g
accurately captures class dependencies, in the same spirit of
original the empirical analysis of [8] (illustrated in Fig. 1).

TABLE I
MEAN = STANDARD DEVIATION DICE SCORE (%) OF THE
CROSS-VALIDATION EXPERIMENTS. -T AND -¥ SIGNIFY THAT THE
NULL-HYPOTHESIS OF THE PAIRWISE T-TEST WITH REGARDS TO THE
U-NET BASELINE IS REJECTED WITH p < 0.05 AND p < 0.01,
RESPECTIVELY. BEST MEAN RESULTS ARE BOLDFACED.

Model ISIC18 Kvasir-SEG BUSI
U-Net [1] 85.40 £ 0.25 7222 + 1.82 62.20 £+ 2.40
+cSE [8] 85.94 + 0.367 7272 + 1.52 65.36 + 1.36
+SRM [13] 84.33 + 1.27 61.13 4+ 3.42 68.09 + 3.14%
+FCA [14] 86.19 £+ 0.75 70.00 £+ 2.51 66.27 £ 2.48
+Mono [15] 86.24 + 0.27% 71.86 + 2.37  69.00 £ 2.53%

FE. Materials

We select three staple public medical image segmentation
datasets spanning a diverse set of imaging modalities: der-
moscopy, colonoscopy, and ultrasound. Speficially, the 2018
International Skin Lesion Collaboration (ISIC-18) [19], the
2020 KvasirSeg [20] for colonic polyp detection, and the 2020
Breast Ultrasound Images (BUSI) dataset [21], containing
masks for ultrasound scans from absent (i.e., normal), benign
and malign masses.

III. EXPERIMENTAL METHODOLOGY

We follow the U-Net implementation used in the experimen-
tal section of [2], [15]. It has L = 3 encoder/decoder pairs that
output 32, 64, and 128 channels, respectively. The bottleneck
has 256 channels. All convolution layers use rectified linear
unit (ReLU). A batch size of 16 was used to guarantee that
channel attention methods that use batch-normalization layers
are not at a disadvantage [13], [15]. We use Adam for gradient
descent over 400 epochs, and a scheduler would reduce the
learning rate (initially set to 1 x 10~%) by a factor of 0.5
should a plateau be detected over the span of 5 epochs. Data
augmentation was limited to random flips.

Each model was evaluated under a 10-fold cross-validation
for each dataset. The image / mask pairs were normalized to
[0, 1] and then down-scaled using bilinear interpolation to a
spatial resolution of 224 x 224. In all cases, 10% of the out-of-
fold data was set aside as the validation set for early stopping.
To understand the performance of each model we display the
Dice score statistic in Table I. Stratified sampling according
to the frames’ pathological class was employed to generate
the folds for the BUSI dataset, mitigating data-leakage or
imbalance conditioned on the sampling bias of malignant
frames. We set k = 16 for FCA [14] and R = {2,4,8} for
Monofractal recalibration [15], since they are the best-reported
configurations reported by the authors.

A. Excitation analysis

The validation activation responses were collected for each
of the attention modules. We set § = 0.95 and approximate
A by principle component analysis. We solve (8) iteratively
by increasing the number of principal components k until the
ratio exceeds d. Additionally, we also inspect the excitation
responses at the neuron level by fitting a Gaussian whose suf-
ficient statistics are computed channel-wise across all samples
in the validation sets (see Fig. 2).

B. Findings and Discussion

Excitations do not necessarily filter non-informative chan-
nels: This common analogy [2], [9], [12] simply is not
replicated in our results. Although Monofractal displays the
highest performance for the ISIC-18 dataset (see Table I), its
excitations weigh each channel much less aggressively than
all other SE functions (see Fig. 2).
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become less class-dependent as [ — L.

Skip connections affect the covariance of g depending on
l: We tested removing the skip-connections (see Fig. 3, cSE-
NS) and found that this would break the monotonic quasi-
linear relationship between and ! and k. This behavior is
suggestive of the original findings presented in [8] for classi-
fication. Since C' <« Cj, this is reflected in the dimensionality
of the linear manifold where the approximation of Cov(g)
resides, for a given J.

Balanced instance variability is likely advantageous:
Both ¢SE and Monofractal displayed the best results in our
experiments. In contrast, as it can be observed in Fig. 2,
when there was an excessive degree of instance variability
(SRM), or an almost deterministic excitation behaviour (FCA),
performance was usually either sub-par, and even detrimental
when comparing SRM to baseline, for two out of the three
datasets.

15

IV. CONCLUSION

In this paper we layed the foundation for understanding
squeeze-and-excitation layers for the context of image segmen-
tation. We propose an analysis of the empirical covariance of
the excitation layers which contradicted common conjectures
in the literature around these channel-attention functions.
Specifically, our evidence suggest that their effectiveness is
not linked to any type of apparent filtering of certain pre-
sumably uninformative channels. Our findings also suggest
that a balanced instance variability correlates with increased
downstream performance.

We intend to extend this work by analyzing these dynamics
during the entirety of the training procedure. Moreover, we
also intend to study the viability of extending the nn-U-
Net [6] to include the most promising squeeze-and-excitation
primitives.
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