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Abstract— In this study, a deep learning method for kidney 

stone detection is proposed. The method utilizes transfer 

learning by extracting features from a pre-trained ImageNet 

model. However, unlike traditional transfer learning, which 

directly applies or fine-tunes a pre-trained model, the proposed 

approach integrates a custom-designed CNN that operates in 

parallel with the pre-trained network. The feature maps 

obtained from both networks are fused to enhance the model’s 

representation power. After this integration, task-specific 

classification layers are added, and the training process is 

conducted on both the classification layers and the optimized 

model. This approach improves the overall performance of the 

model while providing a more efficient training process. As part 

of this study, a new dataset was created, consisting of 2166 axial 

slice images from 241 patients and 2018 axial slice images from 

46 healthy individuals. Experiments conducted using 

EfficientNetV2s, MobileNetV4s, SqueezeNet, and ResNet18-

based models revealed that the EfficientNetV2s and 

MobileNetV4s-based models excelled in terms of accuracy, 

while the SqueezeNet and ResNet18-based models provided 

stronger results in terms of interpretability. 

  Keywords—Kidney stone, detection, classification, deep 

learning, transfer learning 

I. INTRODUCTION  

Kidney stones are solid structures formed by the 
accumulation of minerals and salts in the kidneys, which can 
cause severe pain and various health issues as they move 
through the urinary tract [1], [2]. The disease stemming from 
kidney stones, i.e., nephrolithiasis, is a common health 
problem worldwide, with research indicating that 
approximately 10-12% of the adult population is affected [3]. 
Particularly in regions with hot and arid climates, where 
inadequate fluid intake and poor dietary habits prevail, the 
prevalence may be even higher [4]. Kidney stones are 2-3 
times more common in men compared to women [5]. In 
addition, one study stated that individuals between the ages of 
40-70 are at risk [1].  

The early diagnosis of kidney stones plays a crucial role in 
patient health outcomes. Stones detected in the early stages are 

generally smaller in size, making them more likely to be 
treated through medication, fluid intake, or minimal invasive 
methods. In contrast, undetected stones can grow and cause 
obstructions in the urinary tract, leading to severe pain, urinary 
tract infections, and kidney function deterioration. Long-term 
undiagnosed kidney stones can lead to increased pressure in 
the kidneys, resulting in hydronephrosis (swelling of the 
kidney) and, in more advanced cases, irreversible kidney 
failure. Furthermore, approximately 50% of individuals with 
kidney stones are at risk of recurrence within 5-10 years [6]. 
Therefore, early diagnosis allows for the implementation of 
lifestyle and dietary changes to prevent stone formation, thus 
reducing the risk of recurrence. In cases diagnosed early, 
stones can be treated naturally or through less invasive 
methods without the need for surgery. Consequently, 
individuals with suspected kidney stones should consult a 
specialist without delay and ensure regular health check-ups.  

Accurate and reliable diagnostic methods are essential for 
the detection of kidney stones. To this end, physicians 
commonly use ultrasound and computed tomography (CT) 
scans. While ultrasound has the advantage of not involving 
radiation, it has limitations in precisely determining the size, 
location, and number of stones. In this context, CT imaging 
stands out due to its higher accuracy rates. Computed 
tomography (CT) is an effective method for detecting and 
evaluating kidney stones, providing clear information about 
the size, location, and number of stones. Particularly, non-
contrast CT (NCCT) can detect even non-calcium stones, 
allowing for the identification of all types of stones [7]. 
However, the major drawback of CT scans is the radiation 
involved, which should be minimized by avoiding 
unnecessary repetition.  

In recent years, artificial intelligence (AI) and machine 
learning-based approaches have gained prominence in 
medical imaging. In the diagnosis of kidney stones, machine 
learning overcomes the limitations of traditional methods by 
offering faster and more accurate analyses. AI-assisted 
systems reduce dependence on radiologist interpretations, 
decrease error rates, and can identify the chemical 
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composition of stones, enabling personalized treatment plans. 
Moreover, these technologies help prevent unnecessary 
surgical interventions, enhance the efficiency of healthcare 
services, and improve patient quality of life.  

In [8], a total of 790 NCCT images were collected from 
278 patients diagnosed with kidney stones, while 1009 NCTT 
images were obtained from 165 healthy individuals. All 
images were acquired in the coronal plane. In this study, the 
XResNet50 model, developed by modifying ResNet50 from 
the residual network family, achieved accuracy, sensitivity, 
precision, and F1 scores of 96.82%, 97%, 97%, and 97%, 
respectively, without utilizing a transfer learning strategy. The 
study conducted in [9], developed a hybrid method called 
ExDark19 for kidney stone detection in which deep learning- 
and machine learning-based methods have been utilized. The 
model utilizes feature extraction based on DarkNet19. The 
most informative features were selected using Iterative 
Neighbourhood Component Analysis (INCA) and classified 
with the k-Nearest Neighbors (kNN) algorithm. The study 
achieved an accuracy of 99.22% using 10-fold cross-
validation and 99.71% with hold-out validation on the data set 
introduced in [8]. In [10], various transfer learning models, 
including MobileNet, Inceptionv3, InceptionResNetv2, and 
Xception, were considered for kidney stone detection. A 
weighted combination of the model predictions was used, with 
the particle swarm optimization method employed to 
determine the optimal weights. The accuracy, sensitivity, and 
F1 scores obtained on the dataset from [8] were 98.84%, 
98.79%, and 98.79%, respectively. In reference work [11], a 
combined method was proposed, utilizing AlexNet as a 
feature extractor and Extreme Learning Machine (ELM) as a 
classifier. The weight optimization for ELM was performed 
using a modified firefly swarm optimization algorithm. The 
method achieved sensitivity, specificity, and F1 scores of 
91.90%, 97.08%, and 99.72%, respectively.  

The summarized literature indicates that most studies 
utilize transfer learning models and metaheuristic algorithms 
to optimize weight updates for improved classification 
performance. However, while most of these studies rely on 
existing models, there remains a need for novel and optimized 
approaches. In this study, a deep learning-based method is 
proposed for kidney stone detection. Unlike conventional 
transfer learning approaches, the model integrates a pretrained 

ImageNet-based network with a custom-designed CNN, 
whose architecture is optimized through hyperparameter 
tuning, operating in parallel. Feature maps from both networks 
are fused to enhance representation capability, followed by 
task-specific classification layers. The proposed method was 
evaluated on a large NCCT data set consisting of 4184 images. 
Experimental results demonstrate that the proposed method 
significantly outperforms its transfer learning counterparts. 

The study is organized as follows: Section II presents the 
proposed method, Section III covers the experimental 
analysis, Section IV discusses the findings, and finally, the 
conclusion is provided in Section V. 

II. PROPOSED METHOD 

As seen in Fig. 1, the proposed method for kidney stone 
detection incorporates elements of transfer learning by 
leveraging a pre-trained ImageNet model for feature 
extraction. However, unlike traditional transfer learning, 
which typically fine-tunes or directly applies a pre-trained 
model, our approach integrates a custom-designed CNN, 
optimized through hyperparameter tuning, that operates in 
parallel with the pre-trained network. The feature maps from 
both networks are fused to enhance the representation power 
of the model. Following this integration, task-specific 
classification layers are added in the following order: batch 
normalization, ReLU activation, dropout, adaptive average 
pooling, and two dense layers. The first dense layer consists 
of 90 feature channels, while the second one outputs two 
classes for classification. The training process is conducted 
only on the task-specific layers and the hyperparameter-
optimized model, ensuring both generalization and task-
specific adaptability. This means, as depicted with the red line 
in Figure 1., gradient computations are performed only for the 
task-specific layers and the optimized model, allowing for 
efficient training while preserving the learned features of the 
pre-trained network. 

A. Custom designed model 

In this study, a custom model is designed to learn task-
related patterns. A network diagram is given in Fig. 2, 
explaining how the custom model is formed in the study. As 
seen in Fig. 2, it begins with a core block comprising two 
sequential repetitions of 2D convolution, batch normalization, 
ReLU, and pooling layers. During the optimization process, 

 

Fig. 1. The proposed method. The method utilizes a custom-designed network, determined through Bayesian hyperparameter optimization, alongside a 

pre-trained model with completely frozen weights. It accepts the ROI image (i.e., the kidneys) for processing. 
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this core block is repeated a selected number of times within 
the search range. In determining the number of filters in the 
2D convolution layer, the elements of the set Ca={32, 64, 96, 
128, 160, 192, 224, 256} are considered. Finally, the model is 
completed by incorporating global average pooling, dropout, 
and two dense layers. While the number of neurons Cb in the 
first dense layer is searched within the range of 30 to 150, it is 
set to one for the binary classification problem.  

B. Pre-trained model  

 Pre-trained models have undergone extensive training to 
recognize complex feature patterns. To leverage this prior 
knowledge, the feature maps of a custom-designed model are 
enriched by integrating those from a pre-trained model. These 
pre-trained feature maps contribute high-level details, 
ultimately enhancing the model’s ability to capture 
meaningful patterns. The pre-trained model is completely 
incorporated into the framework with frozen weights.  

C. Combining the custom-designed model with pretrained 

model 

At this stage, feature maps with a 7×7 spatial resolution 
are extracted from both the custom-designed and pre-trained 
networks. Therefore, any layers producing smaller feature 
maps are removed from each branch. Depth-wise feature map 
concatenation is adopted instead of alternative fusion 
strategies such as element-wise summation or attention 
mechanisms, as it preserves complementary features from 
both networks without introducing additional learnable 
parameters. After concatenation, additional layers are 
appended to enable the network to learn task-specific high-
level representations from the fused tensor, enriched by the 
distinct characteristics of each branch. This fusion strategy 
differs from conventional hybrid methods by integrating 
structurally and functionally distinct paths—one optimized for 
domain-specific texture learning, the other for capturing 
generic deep features. Such structured heterogeneity 
facilitates richer and more robust representations with 
minimal computational overhead, contributing to improved 
performance and generalization. 

III. EXPERIMENTAL ANALYSIS 

A. Data set 

The experiments were conducted on a private data set, 
which is currently not publicly available, retrospectively 
collected from Kastamonu Research and Training Hospital in 
Turkey. This data set consists of 4,184 NCCT images, 
including 2,166 from abdominal scans of 241 patients and 
2,018 from 46 healthy individuals, all acquired in the axial 
plane. Radiologists defined kidney masks for each slice, as 

well. Since only the region of interest, i.e., the kidneys were 
considered in our study, the kidney region was preserved by 
masking each CT abdominal image in the data set.  

To ensure unbiased model evaluation, the data set was 
divided into six non-overlapping folds at the patient level. 
One-fold was allocated as the hold-out set, while the 
remaining five were used for five-fold cross-validation (CV5). 
The distribution of patient and control subjects, along with the 
corresponding number of images in each fold, is summarized 
in Table I. This setup guarantees that no overlap exists 
between training, validation, and test subjects, ensuring 
subject-level independence across folds.  

TABLE I.  FOLD-WISE DISTRIBUTION OF SUBJECTS AND IMAGES 

Fold Patients  Controls 

Fold #1 
283 Images/39 

Patients 

302 Images/7 

Healthy 

Fold #2 
311 Images/40 

Patients 

374 Images/8 

Healthy 

Fold #3 
385 Images/39 

Patients 

367 Images/8 

Healthy 

Fold #4 
362 Images/39 

Patients 

340 Images/8 

Healthy 

Fold #5 
385 Images/39 

Patients 

343 Images/8 

Healthy 

Hold-out 
440 Images/45 

Patients 

292 Images/7 

Healthy 

B. Performance metrics 

The metrics used to evaluate the performance are provided 
between Equations (1) and (6). 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁⁄                                                      ()
                                        

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁⁄                   () 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 𝑇𝑁 + 𝐹𝑃⁄                                             () 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑁 𝑇𝑃 + 𝐹𝑃⁄                                                () 

𝐹1 = 2𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁄                 () 

𝜅 = 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑃𝑐ℎ𝑎𝑛𝑐𝑒 1 − 𝑃𝑐ℎ𝑎𝑛𝑐𝑒⁄                                 () 

C. The hyperparameter optimized model 

The custom model is determined using the Bayesian 
optimization method, with a total of 30 objective function 
evaluations conducted during the experiments. Each model, 
created based on the network diagram given in Fig. 2, was 
trained using the Adam optimizer for 50 epochs. The learning 
rate and mini-batch size was set to 10−4 and 32, respectively. 

 

Fig. 2. The network diagram that explains the model creation process within the study. 
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A randomly selected 10% of the training set was reserved as a 
validation set to follow up the model training process. At the 
end of the optimization process, the final architecture consists 
of a core block repeated six times, resulting in 12 
convolutional layers with 128, 32, 96, 64, 256, and 224 filters, 
respectively. Additionally, the first dense layer was 
determined to have 90 neurons.  

D. The performance analysis of the proposed framework 

The pre-trained models, i.e., MobileNetv4s [12], 
EfficientNetV2s [13], SqueezeNet [14], and ResNet18 [15], 
were considered in this study. Accordingly, four different 
versions of the proposed framework were developed using 
these lightweight pre-trained models. Each version was 
trained for 50 epochs using the Adam optimizer with a global 
learning rate of 10−4. For baseline models, the final 
classification layer of each pre-trained network was replaced 
with a dense layer suitable for binary classification. During 
training, only this final layer was updated with a learning rate 
10× higher than the global rate, while the remaining layers 
were fine-tuned using the global learning rate. In Table II, the 
average CV5 scores based on each performance metric is 
given comparatively with the transfer learning models of the 
pre-trained networks. The performance scores on the hold-out 
are provided, as well. The experimental results in Table II 
indicate that the proposed method consistently outperforms its 
baseline counterparts across all evaluation metrics, in both 
CV5 and holdout. In terms of cross-validation (CV5) 
performance, the proposed models show considerable 
improvements over the baseline pre-trained networks. For 
example, the EfficientNetV2S-based model achieves a CV5 
accuracy of 97.0%, which is an improvement of +2.6% 
compared to the baseline EfficientNetV2S model at 94.4%. 
Similarly, its recall increases from 95.9% to 97.0% (+1.1%), 
and the 𝜅  value improves from 88.6% to 93.9% (+5.3%). 
Specificity also increases from 92.7% to 96.9% (+4.2%), and 
precision from 93.2% to 96.9% (+3.7%). The ResNet18-based 
proposed model demonstrates similar gains in CV5 
performance, with an accuracy increase from 93.5% to 95.8% 
(+2.3%). The 𝜅 value rises from 87.0% to 91.5% (+4.5%), and 
specificity improves from 91.3% to 94.7% (+3.4%). Precision 
also shows an increase from 91.9% to 94.9% (+3.0%), 
confirming the robustness of the proposed improvements in 
cross-validation testing. For the SqueezeNet-based version, 
CV5 accuracy rises from 92.7% to 95.8% (+3.1%), with 
notable improvements in recall (95.0% to 96.8%, +1.8%), κ 
(85.4% to 91.5%, +6.1%), specificity (90.5% to 94.7%, 

+4.2%), and precision (91.0% to 94.8%, +3.8%). The 
MobileNetv4s-based model achieves the highest relative 
improvement in CV5, with accuracy increasing from 88.7% 
to 96.5% (+7.8%). Its 𝜅 value improves significantly, from 
77.3% to 93.0% (+15.7%), and specificity sees an impressive 
gain from 84.1% to 97.0% (+12.9%). Precision also increases 
from 85.9% to 97.1% (+11.2%). As it is seen in Table II, in 
the hold-out testing, similar performance trends are observed, 
confirming the generalizability of the proposed framework.  

IV. DISCUSSION 

The experimental results in Table II emphasize the 
significant performance gains achieved by the varying 
versions of the proposed method. In Fig. 3., the gradient-
weighted class activation maps (GradCAM) are given, as well, 
for each version of the proposed method. As seen in the 
GradCAM visualizations for the SqueezeNet-based model in 
Fig. 3(a), the model focuses more on the kidney containing the 
stone. Similarly, the GradCAM visualization for the 
ResNet18-based model in Fig. 3(b) shows stronger activation 
around the pathological region, although some activations are 
also observed near the healthy kidney. On the other hand, the 
GradCAM visualizations for the EfficientNetV2S-based 
model in Fig. 3(c) and the MobileNetV4-based model in Fig. 
3(d) indicate that these models fail to focus on the relevant 
regions. 

Based on the results presented in Table II, the 
EfficientNetV2S- and MobileNetV4-based models appear to 
be the most effective versions of the proposed method across 
all metrics. However, their GradCAM visualizations, shown 
in Fig. 3(c) and Fig. 3(d), do not align with these findings, 
suggesting a discrepancy between quantitative performance 
and localization quality. More specifically, the MobileNetV4-
based model (Fig. 3d) exhibits a broader distribution of 
attention rather than precisely localizing the affected kidney. 
On the other hand, the EfficientNetV2S-based model (Fig. 3c) 
fails to focus on the region of interest, indicating that its high 
performance may stem from global feature utilization rather 
than localized pathological indicators. This behaviour 
contrasts with their higher recall and accuracy values, raising 
concerns about the interpretability of their decision-making 
process. The SqueezeNet-based model (Fig. 3a) and the 
ResNet18-based model (Fig. 3b) demonstrate a strong focus 
on the kidney with stones, indicating their ability to accurately 
highlight pathological regions. This aligns with their high 
recall scores (96.8% and 96.9%, respectively), suggesting that 

TABLE II.  COMPARISON OF THE PRE-TRAINED MODELS AND THE PROPOSED MODELS BASED ON PERFORMANCE METRICS. 

Models 

Accuracy  

(%) 

Recall  

(%) 
Kappa (𝜅) 

(%) 

Specificity 

(%) 

Precision  

(%) 

F1  

(%) 

C
V

5
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o
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t 
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V

5
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o
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o
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C
V

5
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o

ld
o
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C
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5
 

H
o

ld
o

u
t 

C
V

5
 

H
o
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o

u
t 

C
V

5
 

H
o

ld
o

u
t 

MobileNetv4s 88,7 91 93,3 92,8 77,3 81,2 84,1 88,4 85,9 92,4 88,7 90,6 

SqueezeNet 92,7 94,7 95,0 97,1 85,4 88,9 90,5 91,1 91,0 94,3 92,7 94,1 

ResNet18 93,5 94,6 95,7 96,4 87,0 88,6 91,3 91,8 91,9 94,7 93,5 94,1 

EfficientNetV2S 94,4 94,9 95,9 96,9 88,6 89,2 92,7 91,8 93,2 94,7 94,3 94,3 

Proposed (SqueezeNet–based) 95,8 97,6 96,8 98,2 91,5 94,9 94,7 96,6 94,8 97,8 95,8 97,4 

Proposed (ResNet18–based) 95,8 97,9 96,9 98,2 91,5 95,5 94,7 97,3 94,9 98,2 95,8 97,8 

Proposed (MobileNetv4s–based) 96,5 97,3 95,9 95,9 93,0 94,3 97.0 99,3 97,1 99,5 96,5 97,7 

Proposed (EfficientNetv2s–based) 97,0 97,6 97,0 97,5 93,9 94,9 96,9 97,7 96,9 98,4 97,0 97,6 
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these models effectively capture positive cases. These results 
indicate a clear trade-off: the SqueezeNet- and ResNet18- 
based models prioritize sensitivity, making them more 
suitable for detecting pathological cases, whereas the 
EfficientNetV2s- and MobileNetV4s-based models are not 
suitable candidates as the pre-trained model of the proposed 
method. 

V. CONCLUSION 

 In this study, we developed and evaluated a hybrid CNN 
framework for kidney stone detection using transfer learning 
and feature fusion. The proposed method integrates a custom-
designed CNN with pre-trained lightweight models, 
leveraging their feature extraction capabilities to enhance 
classification performance on a private CT abdomen data set. 
The results showed that the proposed method, particularly 
when leveraging EfficientNetV2S and MobileNetV4s, 
significantly outperformed baseline models in all evaluation 
metrics, such as accuracy, recall, and 𝜅. However, despite the 
quantitative improvements, the GradCAM visualizations 
indicated that these models often failed to localize the region 
of interest, suggesting a potential gap between classification 
performance and interpretability. In contrast, the SqueezeNet 
and ResNet18-based models, although exhibiting lower 
overall performance, excelled in focusing on the pathological 
regions, which may make them more suitable for applications 
requiring high sensitivity and interpretability. Overall, while 
EfficientNetV2S- and MobileNetV4s-based models achieved 
the best classification results, their limited interpretability 
poses challenges in clinical use where decision transparency 
is vital. Additionally, the single-center data set restricts 
generalizability due to the lack of external validation. Future 
work will focus on developing a ROI-based model to enhance 
both accuracy and clinical interpretability. 
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Fig. 3. The gradient-weighted class activation maps of the proposed models based on different architectures. (a) SqueezeNet-based model. (b) ResNet18-

based model. (c) EfficientNetV2s-based model. (d) MobileNetV4-based model. 
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