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Abstract—In this study, we developed deep learning-based
method to classify the type of surgery performed for epiretinal
membrane (ERM) removal—either internal limiting membrane
(ILM) removal or ERM-alone removal. Our model, based on
the ResNet18 convolutional neural network (CNN) architecture,
utilizes postoperative optical coherence tomography (OCT) center
scans as inputs. We evaluated the model using both original scans
and scans preprocessed with energy crop and wavelet denoising,
achieving 72% accuracy on preprocessed inputs, outperform-
ing the 66% accuracy achieved on original scans. To further
improve accuracy, we integrated tunable wavelet units with
two key adaptations: Orthogonal Lattice-based Wavelet Units
(OrthLatt-UwU) and Perfect Reconstruction Relaxation-based
Wavelet Units (PR-Relax-UwU). These units allowed the model
to automatically adjust filter coefficients during training and
were incorporated into downsampling, stride-two convolution,
and pooling layers, enhancing its ability to distinguish between
ERM-ILM removal and ERM-alone removal, with OrthLatt-
UwU boosting accuracy to 76% and PR-Relax-UwU increasing
performance to 78%. Performance comparisons showed that our
AI model outperformed a trained human grader, who achieved
only 50% accuracy in classifying the removal surgery types from
postoperative OCT scans. These findings highlight the potential
of CNN based models to improve clinical decision-making by
providing more accurate and reliable classifications. To the best
of our knowledge, this is the first work to employ tunable wavelets
for classifying different types of ERM removal surgery.

Index Terms—Biomedical image processing, Retinal images,
Machine learning, Convolutional neural networks, Residual neu-
ral networks, Discrete wavelet transforms.
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I. INTRODUCTION

The retina is a sensory tissue that converts light into neural
signals for vision. It consists of ten layers, from the internal
limiting membrane (ILM) to the retinal pigment epithelium
(RPE) [1]. An epiretinal membrane (ERM), a fibrocellular
layer of glial cells, fibroblasts, or macrophages, can form on
the ILM, distorting retinal layers and impairing vision [2].
ERM surgery, involving ERM removal with or without ILM
peeling, improves retinal structure and function [3]. While
ILM removal may reduce ERM recurrence [4], it is linked to
micro-scotomas, reduced retinal sensitivity, and delayed visual
recovery [5], making it a debated topic. Optical coherence
tomography (OCT) is commonly used for ERM assessment,
but distinguishing ILM removal from postoperative scans
remains challenging and often requires surgical notes.

This work explores the use of artificial intelligence (AI) to
analyze postoperative OCT scans and determine ILM removal,
offering a tool for clinical follow-up and insight into structural
differences between surgical techniques. To the best of our
knowledge, this is the first study to develop a convolutional
neural network (CNN) model for determining ERM surgery
types using postoperative OCT scans. ResNet18 [6] was used
as the baseline model with center OCT scans as input. To
enhance accuracy, we introduced two preprocessing steps:
energy-crop and wavelet denoising. Building on prior work
[7], [8], we incorporated two tunable wavelet units: OrthoLatt-
UwU, enforcing orthogonality and perfect reconstruction
through an orthogonal lattice structure, and PR-Relax-UwU,
relaxing the perfect reconstruction constraint. These units
replaced traditional stride-convolution, downsampling, and
pooling functions in ResNet18. Unlike max-pooling [9] and
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average-pooling [10], which discard fine-grained details, these
units preserve both low-pass and high-pass features, improving
the model’s ability to distinguish between ERM-only and
ERM-ILM removal surgeries. AI classifications were com-
pared with those of a trained ophthalmologist, who achieved
50% accuracy. The best ResNet18 model using original OCT
scans reached 66%, while preprocessing improved accuracy
to 72%. Further integration of OrthoLatt-UwU and PR-Relax-
UwU increased accuracy to 76% and 78%, respectively. These
results demonstrate that CNN-based AI models outperform
human graders and highlight the effectiveness of preprocessing
and tunable wavelet unit integration in postoperative OCT
analysis. This is also the first study to employ tunable wavelets
in AI models for medical imaging applications.

II. LITERATURE REVIEW

Many studies indicate that ILM removal can alter the inner
retinal layers, potentially affecting the integrity and function
of remaining retinal cells [11]. Macular surgical techniques
continue to advance toward minimizing tissue trauma, ensur-
ing stable anatomical and visual outcomes, and preventing
recurrence [12], [13]. With AI increasingly integrated into
medical practice, its potential to refine surgical techniques is
gaining recognition [14]. This capability is particularly useful
for detecting subtle OCT changes that human observers might
overlook and for patients transitioning to a new physician with-
out access to prior surgical notes. Current research on tissue
changes after ERM peeling relies primarily on histological
analysis of ex vivo samples, limiting real-time retinal assess-
ment during surgery [15], [16]. While histopathology provides
valuable post-surgical insights, it is impractical for routine
use. In contrast, OCT is widely accessible and commonly
used both preoperatively and for follow-up, making it an
ideal tool for retinal evaluation [17], [18]. Hence, AI-assisted
analysis of postoperative OCT scans could help determine
whether ERM alone or both ERM and ILM were removed,
offering a valuable tool for retina surgeons. However, to the
best of our knowledge, no prior studies have employed AI
to detect structural differences between ERM-only and ERM-
ILM removal using postoperative OCT scans.

III. METHOD

An OCT scan processing pipeline was developed to classify
ERM-only and ERM-ILM removal surgeries, as shown in
Fig. 1. The pipeline consists of preprocessing and a CNN-
based classification model. Preprocessing includes energy-
crop, which removes non-essential regions using vertical pixel
energy, and wavelet denoising, which filters high-frequency
noise while preserving details. ResNet18 serves as the base
CNN model, enhanced with OrthLatt-UwU and PR-Relax-
UwU units to retain fine details and high-frequency features,
reducing information loss from max-pooling.

A. Preprocessing Procedure

1) Energy-Crop: The energy-crop method is designed to
remove image areas with little meaningful information, as

essential structural details are typically concentrated near the
center of an OCT scan. This process uses an adaptive approach
to select the relevant area by applying a threshold based on
the pixel energy for each vertical coordinate. The pixel energy
Ey at a vertical coordinate y is defined as follows:

Ey =
∑
x

|px,y|, (1)

where px,y is the pixel value at coordinate (x, y) in which x
and y represent the horizontal and vertical coordinate indices,
respectively. The thresholding value for cropping the image is
defined as Threshold = mean − a × StandardDeviation,
where mean and StandardDeviation represent the average
and standard deviation of all Ey , with the controlling param-
eter a. A higher a-value results in a smaller cropped area.
Multiple a-values were tested in order to find the best set-
up. Using this threshold, the first and last vertical coordinates
where Ey exceeds Threshold are identified to define the
cropping boundaries. This process is illustrated in Fig. 2.

2) Wavelet-Denoising: The wavelet denoising process is
proposed to reduce high-frequency noise while preserving
detailed scan features. The process include discrete wavelet
transform (DWT) decomposition of the input image into a
low-pass component LL and three high-pass components LH ,
HL, and HH . The denoised image Idenoised is defined as the
sum of LL, LH , and HL:

Idenoised = LL+ LH +HL. (2)

The process emphasizes the HL and LH components, as they
encapsulate the majority of fine structural details present in
the OCT scan. In addition, the HH component is discarded,
as it contains high-frequency information in both vertical
and horizontal orientations, which may represent noise. The
process is illustrated in Fig. 3.

B. Tunable Wavelet Unit based Models for Surgery Classifi-
cation

Tunable wavelet units are integrated into CNN models to
enhance classification performance, addressing the loss of fine-
grained features caused by max-pooling and average pooling in
conventional CNNs. These units employ DWT decomposition
with tunable coefficients, enabling the network to retain high-
frequency features while optimizing filter coefficients for the
classification task.

1) Orthogonal Lattice Structure Tunable Wavelet Unit:
In OrthLatt-UwU implementation [7], the tunable wavelet
unit with the low-pass filter H0 and high-pass filter H1 is
constructed with orthogonal lattice structure. The structure can
be expressed as follows:[

H0(z)
H1(z)

]
=

[
H0(z)

−z−LH0(−z−1)

]
(3)

=

[
1 0
0 −1

]
RKΛ(z2) · · ·R1Λ(z

2)R0

[
1

z−1

]
, (4)

where Rk is a rotation matrix used to construct the filter,
with k = 0, . . . ,K. The delay matrices within the filter

1543



Fig. 1. Visualization of the ERM-only/ERM-ILM removal surgery classification pipeline based on OCT center scan input.

are denoted as Λ(z2). Additionally, N represents the order
of the filter, defined as N = 2K + 1. In addition, rotation
matrices are inherently orthogonal. Thus, Rk and Λ(z2) can
be mathematically expressed as follows:

Rk =

[
cos(θk) sin(θk)
−sin(θk) cos(θk)

]
=

[
ck sk
−sk ck

]
;

Λ(z) =

[
1 0
0 z−1

]
. (5)

In Eq. (III-B1), θk represents a rotation angle that determines
the coefficients of the wavelet filter bank, with k = 0, . . . ,K.
These rotation angles, used in the rotation matrices—where
either their rows or columns are orthonormal—are also re-
ferred to as lattice coefficients, defining the filter coefficients
within the filter bank. This orthonormality ensures that the
resulting filters, obtained through the multiplication of rotation
and delay matrices, preserve orthogonality and hence, perfect
reconstruction. These lattice coefficients θk are also the tunable
parameters, making the wavelet unit tunable in CNN.

2) Tunable Wavelet Unit with Perfect Reconstruction Relax-
ation: The tunable wavelet in the PR-Relax-UwU implemen-
tation [8] has H0 and H1 as the low-pass and high-pass filters,
respectively. Since the perfect reconstruction (PR) constraint
is relaxed, the filter coefficients satisfy the alias cancellation

Fig. 2. Visualization of the Energy-Crop procedure. The image cropping
process is performed using a threshold value defined as Threshold =
mean− a× StandardDeviation, where a is the control parameter.

Fig. 3. Visualization of the Wavelet Denoising process. The input image is
decomposed using Discrete Wavelet Transform (DWT) into an approximation
component LL, a vertical detail component LH , a horizontal detail com-
ponent HL, and a diagonal detail component HH . The denoised output is
obtained by summing LL, HL, and LH .

condition along with a relaxed Half-band condition. Under the
satisfied alias cancellation condition, the relationship between
H0 and H1 can be expressed as follows [19]:

h1(n) = (−1)nh0(N − 1− n), (6)

where h0, and h1 are filter coefficients of H0, and H1,
respectively. In addition, to fulfill the PR constraint, the filter
coefficients must satisfy the Half-band condition, which is
given as follows [19]:

P(z) + P(−z) = 2, (7)

where P(z) = H0(z)H0(z
−1). From (7), the condition for the

filter coefficients can be expressed as follows:{∑N−1
n=0 h(n)

2
= 1∑N−1

0<n,n+2l<N−1 h(n)h(n+ 2l) = 0, for 0 < l ≤ N/2.
(8)

From (8), the loss function for the PR constraint based on
the Half-band condition can be mathematically expressed as
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TABLE I
SURGERY CLASSIFICATION PERFORMANCE BASED ON ACCURACY WITH DIFFERENT PREPROCESSING PROCEDURES: ENERGY-CROP (EC) (WITH

a = 0.75 AND a = 0.5) AND WAVELET-DENOISING (DENOISE) (USING HAAR AND DB2 WAVELET FUNCTIONS). THE BASELINE PERFORMANCE REFERS
TO RESNET18 WITHOUT PREPROCESSING. THE PERFORMANCE OF THE TRAINED HUMAN GRADER IS 50%.

Preprocessing steps Validation Test
Baseline 60.29(±2.08)% 58.8(±7.86)%
EC-0.75 64.41(±3.77)% 62(±6.81)%

EC-0.75 + Denoise-Haar 67.16(±1.39)% 61.33(±4.11)%
EC-0.75 + Denoise-DB2 64.22(±2.5)% 64(±2.83)%

EC-0.5 61.27(±3.02)% 62.67(±4.11)%
EC-0.5 + Denoise-Haar 61.76(±1.20)% 62.67(±1.89)%
EC-0.5 + Denoise-DB2 62.65(±2.00)% 64.67 (±5.25)%

TABLE II
BEST SURGERY CLASSIFICATION PERFORMANCES BASED ON ACCURACY USING DIFFERENT PROPOSED METHODS: ENERGY-CROP (EC) AND

WAVELET-DENOISING (DENOISE) PREPROCESSING PROCEDURES, ORTHLATT-UWU, AND PR-RELAX-UWU. THE BASELINE PERFORMANCE REFERS TO
RESNET18 WITHOUT PREPROCESSING. THE PERFORMANCE OF THE TRAINED HUMAN GRADER IS 50%.

Methods Validation Test Best on Test
Baseline 60.29(±2.08)% 58.8(±7.86)% 66%
EC-0.5 61.27(±3.02)% 62.67(±4.11)% 68%

EC-0.5&Denoise-DB2 62.65(±2.00)% 64.67(±5.25)% 72%
OrthLatt-UwU-8Tap EC-0.5&Denoise-DB2 62.26(±4.86)% 69.33 (±4.99)% 76%
PR-Relax-UwU-8Tap EC-0.5&Denoise-DB2 64.71(±2.40)% 70.67 (±5.25)% 78%

follows:

LPR =|1−
N−1∑
n=0

h(n)2|2+

N/2∑
l=1

(

N−1∑
0<n,n+2l<N−1

h(n)h(n+ 2l))2. (9)

From (6) and (9), the PR constraint is implemented to train
the filter bank analysis. The relaxation of the PR constraint is
achieved by multiplying LPR with a factor α. Cross-Entropy
loss LCE is used. A higher α strengthens the Half-band
constraint, while relaxing it allows for greater coefficient fine-
tuning. The total loss function L is expressed as follows:

L = LCE + αLPR. (10)

For both tunable wavelet unit cases, given the low-pass and
high-pass filters H0(z) and H1(z), the corresponding high-
pass and low-pass filter matrices are computed and denoted as
H and L. These matrices are used to extract the approximation
component Xll and the detail components Xlh, Xhl, and Xhh

from an image or feature map X. The computation of L can
be mathematically described as follows:

L = DĤ, (11)

where D is the downsampling matrix with a factor of 2, and Ĥ
is a Toeplitz matrix with filter coefficients h0, h1, . . . , h2N−1

of H0(z). The matrix H has a similar structure to L but
uses the filter coefficients of H0(z

−1). Using H and L, the
components Xll, Xlh, Xhl, and Xhh are computed as follows:

Xll = LXLT , Xlh = HXLT ,

Xhl = LXHT , Xhh = HXHT .
(12)

In this work, we use a one-layer Fully Convolutional Net-
work (FCN) to combine features from the sub-sample low-
pass and high-pass components extracted via the Discrete
Wavelet Transform (DWT). The combined features can be
mathematically expressed as follows:

Xp = F ′(ReLU(Xll),ReLU(Xlh),

ReLU(Xhl), ReLU(Xhh)), (13)

where F ′ is the one-layer FCN with tunable weights. The
tunable wavelet units are integrated into the CNN archi-
tectures. For the downsampling and pooling layers, we use
the decomposed components as inputs for a one-layer Fully
Convolutional Network (FCN). In addition, we substitute the
two-stride convolution with a non-stride convolution block
followed by the tunable wavelet units.

IV. EXPERIMENTS AND RESULTS

This study adhered to the Declaration of Helsinki and
HIPAA regulations. Written informed consent was obtained
for surgery, and all patient data were anonymized. OCT scans
were reviewed within 12 weeks post-surgery for quality and
completeness, with surgical notes determining ILM peeling
status. Anonymized SD-OCT scans were imported as video
files for human grading and RAW data for AI analysis. The
dataset comprises of 340 training-validation samples and 50
test samples, maintaining a balanced 50/50 ERM-only and
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ERM-ILM distribution. A human grader was trained and tested
on a shuffled set (25 eyes per group) without access to surgical
notes. The training-validation set was randomly shuffled three
times (3-fold experiments) and split 80/20 while preserving the
50/50 balance for the surgery classes. Models were trained
on different training-validation splits and evaluated on the
same test set, with the trained ophthalmologist achieving 50%
accuracy. All models were trained using the Adam optimizer
with a 0.001 learning rate for 200 epochs and a batch size
of 128. The preprocessing methods, energy-crop (EC) and
wavelet-denoising (Denoise), were evaluated against the base-
line ResNet18 model trained on original data. EC experiments
tested a-values of 0.5 and 0.75, with the best setup applied to
Denoise experiments using Haar and DB2 wavelets. Results
are reported in Table I.

Based on test set performance in Table I, the best setup (EC-
0.5 with Denoise-DB2) was selected for tunable wavelet unit
integration experiments with OrthLatt-UwU and PR-Relax-
UwU. The tunable wavelet units having filters with 2-Tap
(Haar), 4-Tap (DB2), 6-Tap (DB3), and 8-Tap (DB4) were
tested, with only the best-performing 8-Tap models reported
in Table II. Table II presents the mean accuracies and best
test set performance for each method. From Table I and
Table II, AI models consistently outperformed trained human
graders in distinguishing between ERM-alone and ERM-
ILM removal surgeries. The combination of preprocessing
and wavelet-based enhancements significantly improved model
performance, demonstrating AI’s potential in refining postop-
erative assessment and supporting clinical decision-making.
Additionally, relaxing the perfect reconstruction constraint in
tunable wavelet unit integration yielded the best classification
results.

V. CONCLUSION

This study is the first to develop convolutional neural
network (CNN) models for classifying ERM surgery types
using postoperative OCT scans. Using ResNet18 as a baseline,
we introduced preprocessing techniques, including energy-
crop and wavelet downsampling, to improve accuracy. Ad-
ditionally, tunable wavelet units—OrthoLatt-UwU and PR-
Relax-UwU—were integrated to enhance feature extraction
and classification. Our results show that AI models consis-
tently outperform trained human graders in distinguishing
between ERM-alone and ERM-ILM removal surgeries. The
combination of preprocessing and wavelet-based enhance-
ments significantly improved model performance, highlight-
ing AI’s potential in refining postoperative assessment and
clinical decision-making. Enhancing OCT analysis with AI
offers a non-invasive, cost-effective approach for assessing
retinal structure, optimizing surgical techniques, understanding
disease pathology, and classifying recurrence. In future work,
the current models can be extended to process OCT volumes
as inputs instead of single OCT scans, potentially enhancing
performance. Additionally, augmentation and diffusion tech-
niques can be employed to increase training data, allowing

deeper networks to be trained without overfitting, leading to
more stable models with reduced performance variability.

REFERENCES

[1] N. Mahabadi and Y. A. Khalili, “Neuroanatomy, retina,” Aug 2023.
[2] V. M. Kanukollu and P. Agarwal, “Epiretinal membrane,” Jul 2023.
[3] Y. Matsuoka, M. Tanito, Y. Takai, Y. Koyama, S. Nonoyama, and

A. Ohira, “Visual function and vision-related quality of life after
vitrectomy for epiretinal membranes: A 12-month follow-up study,”
Investigative Opthalmology & Visual Science, vol. 53, p. 3054, May
2012.

[4] N. Rayess, D. Vail, and P. Mruthyunjaya, “Rates of reoperation in 10 114
patients with epiretinal membranes treated by vitrectomy with or without
inner limiting membrane peeling,” Ophthalmology Retina, vol. 5, no. 7,
pp. 664–669, 2021.

[5] J.-B. Ducloyer, Y. Eude, C. Volteau, O. Lebreton, A. Bonissent, P. Fos-
sum, R. Tadayoni, C. P. Creuzot-Garcher, Y. Le Mer, J. Perol, J. Fortin,
A. Jobert, F. Billaud, C. Ivan, A. Poinas, and M. Weber, “Pros and
cons of internal limiting membrane peeling during epiretinal membrane
surgery: a randomised clinical trial with microperimetry (peeling),”
British Journal of Ophthalmology, vol. 109, no. 1, pp. 119–125, 2025.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[7] A. D. Le, S. Jin, Y.-S. Bae, and T. Q. Nguyen, “A lattice-structure-based
trainable orthogonal wavelet unit for image classification,” IEEE Access,
vol. 12, pp. 88715–88727, 2024.

[8] A. D. Le, S. Jin, Y. S. Bae, and T. Nguyen, “A novel learnable orthogonal
wavelet unit neural network with perfection reconstruction constraint
relaxation for image classification,” in 2023 IEEE International Confer-
ence on Visual Communications and Image Processing (VCIP), pp. 1–5,
2023.

[9] J. Weng, N. Ahuja, and T. Huang, “Cresceptron: a self-organizing
neural network which grows adaptively,” in [Proceedings 1992] IJCNN
International Joint Conference on Neural Networks, vol. 1, pp. 576–581
vol.1, 1992.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[11] R. Gelman, W. Stevenson, C. Prospero Ponce, D. Agarwal, and J. B.
Christoforidis, “Retinal damage induced by internal limiting membrane
removal,” Journal of Ophthalmology, vol. 2015, no. 1, p. 939748, 2015.

[12] M. Ferrara, A. Rivera-Real, R. J. Hillier, M. Habib, M. R. Kadhim,
M. T. Sandinha, K. Curran, A. Muldrew, and David, “A randomised
controlled trial evaluating internal limiting membrane peeling forceps in
macular hole surgery,” Graefe s Archive for Clinical and Experimental
Ophthalmology, vol. 261, p. 1553–1562, Dec 2022.

[13] R. Gaber, Q. S. You, I. K. Muftuoglu, M. Alam, F. F. Tsai, N. Mendoza,
and W. R. Freeman, “Characteristics of epiretinal membrane remnant
edge by optical coherence tomography after pars plana vitrectomy,”
Retina, vol. 37, p. 2078–2083, Jan 2017.

[14] S. Narayanan, R. Ramakrishnan, E. Durairaj, A. Das, S. Narayanan,
R. Ramakrishnan, E. Durairaj, and A. Das, “Artificial intelligence
revolutionizing the field of medical education,” Cureus, vol. 15, Nov
2023.
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