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Abstract—This study introduces a novel data augmentation
method for improving electroencephalography (EEG)-based mo-
tor imagery classification. Leveraging the inherent variability in
EEG sensor placement, geometric augmentations are applied
to EEG data to simulate realistic cap misalignments during
data acquisition. The resulting augmented datasets are used to
train Deep Riemannian Networks models, such as SPDNet and
EE(G)-SPDNet. Results show the potential of the method for
improving the robustness and generalizability of motor imagery
brain-computer interfaces.

Index Terms—Data Augmentation, Brain-computer Interfaces,
Riemannian Networks.

I. INTRODUCTION

Brain-computer interfaces (BCIs) represent a significant
advancement in assistive technologies and neurorehabilitation,
offering the potential to restore lost motor function and
improve communication for individuals with severe motor
impairments [3], [4]. However, the inherent complexity of
electroencephalography (EEG) data, combined with the inter-
subject and inter-session variability, poses a challenge for
achieving reliable and robust BCI performance [12].

The field of machine learning, in special deep learning, has
offered substantial advances in addressing these challenges [2].
The capacity of neural networks to learn complex represen-
tations from EEG data presents a considerable potential for
improving the accuracy of BCI systems. This is especially true
for models based on Riemannian geometry, which leverage
the unique geometric properties of covariance matrices to
effectively capture the complex structure of EEG data. These
models have demonstrated promising results in classifying
EEG signals in various applications [9].

However, electroencephalography signals are still inherently
complex data due to their variability and redundancy. This
variability arises from several sources: inter-subject and cogni-
tive differences in the brain anatomy, intra-subject fluctuations
in alertness and electrode placement, and volume conduction,
including eye blinks and muscle movements. At the same
time, signal redundancy, often marked by the spatial mixing
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of brain source signals and, in a temporal extent, the repeating
wave segments, also adds complexity to EEG data. This
redundancy, although initially hinders accurate classifications,
can also serve as a discriminative feature. For instance, the
redundancy rate may distinguish between healthy and epileptic
EEG patterns [7]. Addressing these challenges is important
for developing reliable interfaces, which demand methods that
adapt to individual variability and handle possible redundancy
effects.

In this context, this article presents a novel data augmen-
tation strategy designed to mitigate the effects of EEG data
variability in the acquisition process. Specifically, we leverage
the variability introduced by the physical placement and pos-
sible misalignment of EEG sensors on the scalp, simulating
them with geometric transformations applied directly to the
data. This approach aims to generate synthetic EEG data that
captures the fluctuations and imperfections generally found in
real recordings, possibly leading to improvements in classifi-
cation performance. We use Riemannian-based models, such
as SPDNet [11] and EE(G)-SPDNet [10], taking advantage
of the combination of its capabilities in handling the non-
Euclidean structure of covariance matrices with the geometric
transformations applied to the EEG data. The next sections
detail our methodology, results and the implications of this
method.

II. DEEP RIEMANNIAN NETWORKS

This study focuses on using Riemannian-based models for
EEG classification, chosen for its particular suitability in han-
dling the complexities of EEG data. Different from traditional
Euclidean-based approaches, these models use the principles
of Riemannian geometry to represent and process the data.
This is a crucial advantage since this type of data often reside
in a non-Euclidean manifold, exhibiting complex relations
that are not entirely captured by Euclidean methods. The
SPDNet approach maps high-dimensional EEG covariance
matrices into a low dimensional Symmetric Positive Definite
(SPD) manifold, resulting in a more compact and efficient
representation. This reduction in dimensionality contributes
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to improved computational efficiency and reduces the risk of
overfitting.

The SPDNet architecture is composed of three types of
layers, as shown in Figure 1. First is the bilinear mapping
(BiMap) layers, that transform the input SPD matrices into a
new set of matrices. This transformation is mainly designed to
maintain the properties while generating a more discriminative
representation. The weight matrices within these layers are
constrained to be semi-orthogonal, which ensures the out-
put remains within the SPD manifold. Second, eigenvalue
rectification (ReEig) layers introduce a non-linear activation
function, similar to ReLU in convolutional neural networks.
This layer rectifies the smaller eigenvalues in the matrices,
addressing the issue of non-singular or non-positive definite
matrices that frequently arise from the EEG signals. Finally,
the eigenvalue logarithm (LogEig) layer maps the SPD ma-
trices to a Euclidean space via a logarithm transformation,
enabling the application of standard Euclidean operations for
the final classification task.

Fig. 1: Illustration of the SPDNet network.

The EE(G)-SPDNet model extends the standard SPDNet
architecture by using a convolutional layer preceding the
SPDNet layers, enabling an end-to-end processing of the raw
EEG data. This convolutional layer functions as a learnable
filter bank, potentially capturing ideal frequencies before
computing the covariance matrices, thus improving gener-
alizability. The model’s deeper architecture, with multiple
BiMap/ReEig layers, allows it to learn more complex rep-
resentations from the data, potentially benefiting from larger
amounts of data available, compared with a shallow architec-
ture.

III. THE GEOMETRIC AUGMENTATION

In order to enhance the robustness of Riemannian models
and take into account the effects of cap movement during data
acquisition, we introduced a novel data augmentation strategy
based on geometric transformations. This strategy simulates
realistic variations in sensor placement that might occur during
recording, specifically focusing on rotations and translations of
the EEG cap.

To simulate rotations of the cap on the data, we applied
matrix rotations to the EEG preprocessed signals using a
general n-dimensional rotation algorithm [1]. This algorithm
efficiently computes the rotation matrix by aligning the rota-
tion axis v ∈ Rn−1×n with a specific subspace, performing
the desired rotation, and then returning the axis to its initial
position. For example, in a 3D rotation of angle θ around
axis x1, we can define two points a = (a01, a

0
2, a

0
3) and

b = (b01, b
0
2, b

0
3) as the vertices of a line segment S =

−→
ab. The

matrix vk =

[
ak

bk

]
holds the vertices after k transformations,

calculated iteratively as vk = Mk · vk−1 , where Mk is
the transformation matrix. The rotation process begins by
translating point a to the origin (Step 1 → 2 in Figure 2),
resulting in M1 = T (−a):

v1 = M1 · v0, (1)

= T (−a) ·
[
a0

b0

]
=

[
0 0 0

b01 − a01 b02 − a02 b03 − a03

]
(2)

=

[
0 0 0
b11 b12 b13

]
=

[
0
b1

]
(3)

Next, b1 is rotated by angle θ1 around x1 to align āb with the
(x1, x2) plane. With θ1 = arctan 2(b13, b

1
2), the transformation

matrix is M2 = R3,2(θ1), where Ra,b(θ) is defined as

Ra,b(θ) = rij


ra,a = cos θ, rb,b = cos θ,

ra,b = − sin θ, rb,a = sin θ,

ri,j = 1, j ̸= a, j ̸= b,

ri,j = 0, else.

(4)

Applying M2 to v1 yields v2 =

[
0
b2

]
(Step 2 → 3 in

Figure 2). This process continues one more time, rotating b2 to
align with x1 until the desired orientation is achieved. Finally,
the desired rotation of angle θ (M4 = R2,3(θ)) is applied,
followed by the inverse transformations (M−1

3 , M−1
2 , M−1

1 )
to restore the original axis orientation.

For a general n-dimensional rotation of angle θ around axis
v, the overall transformation matrix Mtotal is a composition
of a series of operations. First, an alignment matrix M is
constructed as:

M = T (−a) ·
n(n−1)/2∏

k=2

Rc,c−1

(
arctan 2(v(k−1)

r,c , v
(k−1)
r,c−1 )

)
.

(5)
This matrix sequentially aligns the rotation axis with column
c and row r, setting v

(k)
r,c = 0. The final rotation matrix,

Mtotal, then incorporates the desired rotation and reverses the
alignment process:

Mtotal = M ·R(n−1),n(θ) ·M−1. (6)

The translation transformation, intended to simulate varia-
tions in the cap tightness (loose or tight fitting), was imple-
mented by applying a translation matrix to the preprocessed
EEG data, effectively adding or subtracting the signal’s values.
The transformations were then added into the respective pre-
processed data, and the augmented dataset randomly shuffled,
increasing the amount of samples for each subject analyzed.
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Fig. 2: General 3D transformation steps to align āb to axis x1.

IV. DATASET AND METHODOLOGY

A. Dataset and DRNs

This study uses the BCI Competition IV - dataset 2a [8],
comprising EEG data from nine subjects performing four-
class motor imagery tasks. The dataset features recordings of
imagined movements of the left and right hands, both feet, and
tongue. Each subject participated in two sessions on separate
days, with each session consisting of multiple runs and a
total of 288 trials. EEG data was acquired using a 22-channel
Ag/AgCl montage, sampled at 250 Hz and bandpass filtered to
reduce noise. The EEG data was preprocessed, with bandpass
filtering between 4.0 Hz and 38.0 Hz. Trials were segmented
into three seconds overlapping windows with a 0.5 second
stride and the signals were converted to microvolts. A Sample
Covariance Matrix layer (SCM) then transforms each epoched
EEG data segment (X ∈ RNCH×NT ) into a covariance matrix
(C ∈ RNCH×NCH ). This ensures the input of the model is
symmetric and positive definite.

Two model configurations were used, SPDNet with a
single BiMap/ReEig layer, and EE(G)-SPDNet with an ini-
tial convolutional layer followed by the SPDNet with three
BiMap/ReEig blocks. The same parameters were used across
all subject for each model: a learning rate of 0.01225 and
a batch size of 64 were used for the SPDNet, trained for
600 epochs; a learning rate of 0.001 and a batch size of
216 were used for the EE(G)-SPDNet, trained for 50 epochs.
The Adam optimizer was employed for both models, while
only SPDNet had cosine annealing learning rate scheduling.
The parameters for the augmentation transformations were
optimized for each model, using a train/validation/test split,
with validation size of 0.33. Following optimization, the
best transformation parameters for each subject were used to
compute the mean test accuracy across four independent runs,
in a train/test split configuration. The Weights and Biases [5]
and Hydra [13] frameworks were used for experiment logging
and management.

B. Augmentation Hyperparameters Selection

The parameters used in these transformations – the rotation
angle and axis, the translation vector, and the overall augmen-
tation rate – were optimized for each subject and for each
model using the Optuna framework [6]. For both SPDNet and
EE(G)-SPDNet models, the optimization was leveraged with
a total of 100 trials per subject to maximize the validation
accuracy as the objective function. A Random Sampler was
used to sort through the possible parameter values, and a
Median Pruner criteria stopped unpromising runs. The search
space for the rotation angle spanned [−10◦, 5◦] with incre-
ments of 0.1◦, intended to capture possible asymmetries in the
cap positioning. The rotation axis was represented as a matrix
with dimension in terms of the number of channels NCH ,
(NCH − 1, NCH), filled by the same value, searched within
the interval [−1.0, 1.0] with a 0.1 step size. The translation
vector, with dimension (1, NCH), similarly represented as a
matrix with a single value per channel, was searched in the
range [−5.0, 5.0] with 0.1 increments. Finally, for the SPDNet
model, the augmentation rate was optimized across the range
[0.25, 1.0] with steps of 0.25, representing the proportion of
augmented data added to the original dataset.

Table I shows the optimized rotation parameters for each
subject on the SPDNet model trained on the BCI Competition
IV - dataset 2a. These parameters reveal substantial subject-
specific variations in the best configurations for rotation
transformations. The selected augmentation rates for rotations
ranged from 0.25 to 1.0, indicating that some subjects were
able to exploit the augmented data more efficiently than oth-
ers. The best rotation angles showed considerable variability,
spanning from −9.8◦ to 3.3◦, possibly reflecting different
degrees of sensitivity to cap misalignment. The rotation axis
values, also demonstrating variability within their defined
range, highlight the complexity in capturing the nature of these
misalignments with a single optimized value.

Subject Rotation

Augmentation Angle Axis Value

1 1.0 -8.6 -0.2
2 1.0 -5.1 -0.3
3 0.5 3.3 0.0
4 1.0 -7.8 -0.7
5 0.75 -2.8 -0.1
6 0.75 0.4 0.4
7 0.25 0.2 0.8
8 0.75 -6.1 -0.3
9 1.0 -9.8 0.7

TABLE I: Optimized rotation parameters for the SPDNet
model with BCI Competition IV - dataset 2a.

Table II presents the optimized translation parameters for
the same dataset. The size of translation, with the best size
spanning from −3.6 to 4.0, may reflect individual differences
in the scalp’s surface and skull shape, leading to different
effects from a loose or tight EEG cap. These results emphasize
the heterogeneous nature of EEG data and how individual
subject-specific responses to geometric augmentation must be
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taken into account, further reinforcing the need for adaptive
feature extraction techniques involving cap movement.

Subject Translation

Augmentation Size

1 0.75 2.0
2 0.75 2.7
3 0.25 3.6
4 0.5 0.8
5 0.25 1.3
6 0.25 4.0
7 0.5 -3.6
8 0.5 2.0
9 0.75 1.7

TABLE II: Optimized translation parameters for the SPDNet
model with BCI Competition IV - dataset 2a.

Finally, Table III combines the optimized rotation and
translation parameters, providing a comprehensive view of the
best configurations for each subject. The chosen parameters
suggest that individual subjects may require different types
of augmentation to maximize model performance, as some
benefit from higher augmentation rates, whereas others need
lower modification intensities.

Subject Rot+Tr

Augmentation Angle Axis Value Tr. Size

1 1.0 -8.6 0.0 2.0
2 1.0 -5.1 -0.3 2.7
3 0.5 3.3 0.0 3.6
4 1.0 -7.8 -0.7 0.8
5 0.75 -2.8 -0.1 1.3
6 0.75 0.4 0.4 4.0
7 0.5 0.2 0.8 -3.6
8 0.75 -6.1 -0.3 2.0
9 1.0 -9.8 0.7 1.7

TABLE III: Optimized rotation and translation parameters
combined for the SPDNet model with BCI Competition IV
- dataset 2a.

The transformation parameters with the EE(G)-SPDNet
model were optimized following the same configuration as de-
scribed before, except that the augmentation rate was searched
across a fixed set of values [0.5, 1.0, 1.5, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0, 9.0, 10.0], allowing for augmentations up
to ten times the original dataset size. This strategy aimed
at leveraging the deeper architecture of the EE(G)-SPDNet
model, potentially improving its ability to learn more complex
representations and achieve better generalization. To ensure
diversity in the augmented data and prevent excessive repeti-
tion of transformations, in augmentations above 1.0, a small
perturbation (0.001) was added to each parameter value. Figure
3 shows the effects of −10◦ and 5◦ rotations around the axis
v = [[0, 1, 0], [0, 0, 0]] applied to a topographic map of subject
one of BCI Competition IV - dataset 2a.

V. RESULTS AND DISCUSSION

Table IV presents classification accuracies for the SPDNet
and EE(G)-SPDNet models, respectively, trained on the BCI

Competition IV - dataset 2a with and without geometric data
augmentation. In the SPDNet model, the results show an
inter-subject variability in response to augmentation: some
subjects exhibited minor accuracy improvements (e.g., subjects
2 and 3), while others showed minor decreases or no change.
It’s important to note that the average accuracy remained
consistent and within the statistical uncertainty (around 1-
2% difference) across baseline and augmented conditions for
both models, suggesting the augmentation strategy did not
negatively impact overall performance. Also, the augmentation
strategy combining rotation and translation showed classifica-
tion accuracies similar to those obtained using rotation alone,
indicating that the translation component of the augmentation
may not significantly contribute to improving model perfor-
mance. Hence, rotation was selected for the next step.

Subject SPDNet EE(G)-SPDNet

Baseline Rotation Translation Rot. + Transl. Baseline Rotation

1 73.3 71.6 72.3 72.2 79.5 85.6
2 44.6 45.8 45.4 45.5 51.7 53.7
3 74.5 74.9 74.5 75.0 77.2 84.7
4 41.8 42.0 41.5 41.9 61.5 69.9
5 38.6 37.7 35.5 37.8 52.5 65.3
6 45.2 44.9 45.5 44.4 48.0 52.5
7 72.5 70.6 70.2 70.2 76.1 83.5
8 75.2 73.2 74.3 72.9 77.1 76.3
9 73.1 69.6 69.4 70.0 75.5 74.2

Average 59.9 58.9 58.7 58.9 66.6 71.7

TABLE IV: Classification accuracies using SPDNet and
EE(G)-SPDNet models on the BCI Competition IV - dataset
2a with geometric augmentations.

The EE(G)-SPDNet outperformed the SPDNet in both base-
line and rotation conditions, demonstrating that the convo-
lutional layer and deeper BiMap/ReEig architecture improve
data generalization. The exceptions were subjects 8 and 9, that
showed close baseline accuracy and a small variation with
rotation augmentation compared to the SPDNet. In general,
the rotation augmentation under the EE(G)-SPDNet model
showed considerable improvements across many subjects, with
accuracy gains up to 12% with subject 5. The higher augmen-
tation rates selected for the EE(G)-SPDNet model supports
the hypothesis that larger datasets could enhance this model’s
ability to fully utilize its deeper architecture and achieve better
generalization. The subject’s optimal augmentation parameters
highlight the inherent variability in individual responses and
the potential influence of EEG cap movement during data
acquisition. This variability, while initially a challenge, could
be leveraged through a more refined optimization of the
augmentation parameters.

VI. CONCLUSIONS

This study presents a novel geometric data augmentation
strategy designed to improve the robustness and accuracy of
motor imagery classification BCIs based on EEG, using Deep
Riemannian Networks (DRNs) models. Our study demon-
strates that, for a shallow model such as SPDNet, the proposed
augmentation method consistently maintained performance
comparable to the baseline results, while for a deeper model
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(a) Rotation of −10◦ (b) No rotation (c) Rotation of 5◦

Fig. 3: Rotation transformation effect on topographic map of EEG data from the subject one of BCI Competition IV - dataset
2a. The data was selected for the right hand movement and C3, Cz and C4 channels.

such as EE(G)-SPDNet, there was a considerable improvement
across many subjects. This suggests the augmentation strategy
is robust and highlights the potential of DRNs to effectively
process and interpret EEG data with inherent variability. Fur-
ther investigation into refining the methods, including different
datasets and a more detailed exploration of different geometric
transformations is also intended.
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