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Abstract—We propose a unified multitasking deep learning
method to identify and segment structural regions and detect
immune cells of non-small cell lung cancer tissue. This approach
combines multitask learning and deep supervision to significantly
reduce training time compared with single-task models, while
achieving competitive performance with 50% fewer parameters.
We balance tasks using homoscedastic uncertainty and address
class imbalance through a combination of focal loss and class
weight adjustment.

Tested on multiplexed WSI, our method overcomes challenges
related to variability and limited annotations, while extracting
robust spatial information from the tumor microenvironment
(TME). This data can be leveraged to quantify tumor–immune
dynamics and intercellular communication, thereby providing
objective insights into the TME’s structural and functional
complexity.

Index Terms—Multitask learning, Multi-label learning, deep
supervision, segmentation, cell detection, heatmap regression,
imbalanced data, computational pathology, cancer

I. INTRODUCTION

The tumor microenvironment (TME) plays a crucial role
in influencing cancer cell responses to treatment. A thorough
understanding of the TME and its modifications benefits from
a quantitative, reproducible, and comprehensive analysis of
its constituent components. Multiplex images provide rich,
high-content information and can be effectively analyzed using
efficient, automated processing tools. Analyzing these multi-
plexed whole slide images (WSI) presents the opportunity to
address the significant intra-class variance in the size, color,
and texture of objects of interest (see Fig.1 and Fig.2) through
deep learning (DL) approaches. In the framework of machine
learning, additional challenges such as dataset imbalance (see
Tables I and II) and limited annotations (Fig. 3) can be met
with robust solutions.
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Fig. 1. Image of a whole slide image of NSCLC (size: 95310 x 205272 at
the highest resolution of 0.243 µm/px) and examples of 5 types of regions
to segment: tumor epithelium, necrotic, blood vessel, empty, and stroma.

Traditional image analysis techniques, while essential, often
require considerable, image-dependent parameter adjustments,
which can limit scalability and introduce subjectivity. They
also tend to employ different algorithms for each task—using
one algorithm for region segmentation and another for immune
cell identification. This separation can result in fragmented
workflows that hinder the coordination between multi-scale
features such as regional morphology and cellular spatial dis-
tributions. Additionally, the need for expert knowledge in each
task can make it challenging to translate these methodologies
to other parts of the TME. These challenges become even more
pronounced in large-scale studies, particularly in the presence
of staining variability.

Alternatively, unifying multiple tasks under a single model
offers clear benefits. By aggregating tasks such as segmenta-
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Fig. 2. Examples of 3 immune cell types : T cell (brown), mast cell (cyan),
Nk cell (red) and their respective false detection

tion and immune cell detection, the model can share valuable
information between them—where segmentation of the tumor
area can aid in detecting immune cells, and vice versa. This
combined approach not only streamlines the analysis process
but also enhances the model’s flexibility in adapting to the
variability and complexity of the TME, ultimately yielding a
more robust and generalizable tool.

In this work, we propose a unified method for extracting
structures of interest in the TME of non-small cell lung
cancer (NSCLC)—including TME regions and immune cell
locations—through a multitask approach that simultaneously
performs region segmentation and immune cell detection.

II. DATASET

Our dataset comprises 10 multiplex WSI that include 5
distinct regions (tumor epithelium, empty, necrotic, stroma
regions, and blood vessels; see Fig. 1) and 3 immune cell
types (T cells, mast cells, and NK cells; see Fig. 2).

Generation of annotations
Given the novel staining protocol [1], we have developed
our own training dataset. To streamline the training data
generation process, we use Icy, an user-friendly platform [2]
that integrates computer assisted tools. Manual annotation
for supervised deep learning methods can be labor-intensive,
so we employ an semi automatic approach under human
expert oversight to segment regions and detect immune cells.
This segmentation method relies on color quantization [3]
using a split and merge color algorithm, with the generated
masks polygonalized. For cell detection, the staining image is
decomposed according to the Vahadane method [4], and nuclei
detection is performed via wavelet transform [5] on the nucleus
staining image (blue staining). These approaches, while not
requiring a training step, require human expert supervision to
effectively manage the large intra-class variation present in the
dataset. To promote reproducibility, the dataset has been made
publicly available in zenodo [6]

TABLE I
CLASS DISTRIBUTION OF ANNOTATED REGIONS IN TRAINING DATA

Region TER Necrotic Blood vessels White Stroma
Percentage 78.8% 6.9% 2.53% 7.9% 3.3%

TABLE II
CLASS DISTRIBUTION OF IMMUNE CELL ANNOTATIONS

Cell Type T cells Mast cells Nk cells
Percentage 96.78% 2.02% 1.1%

III. RELATED WORKS

Deep learning has revolutionized biomedical image analysis,
particularly for detection and segmentation tasks. However,
opportunities remain to advance multi-objective architectures
that handle heterogeneous annotations. U-Net [7] and Mask
R-CNN [8] have proven highly effective in semantic and
instance segmentation, yet they are primarily designed for
single-task objectives under fully annotated data. SOLO [9]
advances instance segmentation with location-aware embed-
dings, though it relies on accurate boundary annotations, which
can restrict its application in weakly labeled datasets. These
models face challenges in scenarios where tasks differ in
annotation granularity levels—such as combining pixel-level
region segmentation with weakly supervised cell detection
using sparse point annotations.

Deep supervision methods, which enhance intermediate
layer training with auxiliary losses, have accelerated con-
vergence in applications like cell density estimation [10].
While these methods effectively address single-task optimiza-
tion, they do not provide mechanisms to balance competing
objectives in multi-task settings. Multi-task learning (MTL)
addresses this by optimizing shared representations jointly.
Kendall et al.’s [11] uncertainty-aware architecture scales
losses homoscedastically, offering a principled mechanism to
balance heterogeneous tasks with varying complexities. This
approach remains underexplored in histopathology.

Recent MTL models, such as Cerberus [12], demonstrate
performance gains in both segmentation and regression when
combining multiple objectives compared to single-objective
approaches. However, the Cerberus model is stain-specific,
which can limit its flexibility for applications involving IHC
stains.

IV. METHODOLOGY

Our framework successfully addresses both cell detection
and region segmentation through a unified approach.

A. Pre-processing

To enhance model robustness against staining variations and
rotations, we apply the following data augmentations during
training:

• Geometric transformations: random crops (1024px), mir-
roring (50% chance), 90° rotations (50% chance)

• Appearance variations: color jitter, elastic deformations
• Normalization: zero-mean, unit-variance scaling (applied

consistently during inference)

B. Cell Heatmap Generation

We convert sparse cell coordinates into a probability
heatmap using the following three steps:

1) Place a Gaussian distribution with variance σ on each
dot (x, y coordinates).

2) Apply an element-wise maximum operation to preserve
distinct cell peaks.

3) Normalize the values to the range [0, 1].
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Fig. 3. Cell localization visualization: (A) Original keypoints, (B) Density
map obtained using Gaussian kernel convolution, (C) Heatmap of maximum
Gaussian responses.

The Gaussian spread is controlled by:

σ =
desired diameter

2
√
2 ln 2

(1)

where σ controls the extent of cell influence in the density map. Each
location (x, y) in the final map represents the maximum Gaussian
value from nearby cells:

I(x, y) = max
i

exp

(
− (x− xi)

2 + (y − yi)
2

2σ2

)
(2)

where I(x, y) is the resulting heatmap at position (x, y),
representing the maximum influence of all Gaussian centers
at that location; xi, yi are the coordinates of the i-th Gaussian
cell; σ is the standard deviation of the Gaussian, controlling

its spread; e−
(x−xi)

2+(y−yi)
2

2σ2 defines the influence of the i-
th Gaussian cell at (x, y); and maxi selects the maximum
contribution among all Gaussian cells for each point.

C. Multi-scale Supervision

Following [10], we generate auxiliary supervision signals
by downsampling ground truth maps with scaling factors of
2, 4, and 8. We do so by applying max pooling instead of sum
pooling in order to preserve the peaks for the downsampled
maps as well. This multi-scale approach enhances detection
accuracy across different resolutions.

D. Cell Detection via Density Regression

Building on density estimation methods [13], [14], we
formulate cell detection as a regression task that predicts cell
heatmaps Y ∈ RM×N from input images X . The regression
loss integrates mean squared error with class-specific weights
wc derived from cell frequency:

Lreg =
∑
c

wc · ∥yc − ŷc∥2 (3)

where yc and ŷc denote the ground truth and predicted cell
heatmaps for class c.

E. Region Segmentation loss

Weighted Focal Loss: Emphasizes learning on challenging
examples while balancing classes:

LFocal = − 1

N

N∑
i=1

C∑
j=1

wjyij(1− pij)
γ log(pij) (4)

Fig. 4. Multi-task architecture with shared encoder and task-specific decoders.

where LFocal is the focal loss value; N is the total number of
samples in the dataset; C is the number of classes; yij ∈ {0, 1}
indicates whether class j is the true classification for sample i;
pij represents the predicted probability that sample i belongs
to class j; wj is the class weight assigned to address data
imbalance; and γ is the focusing parameter that modulates the
loss contribution of well-classified examples.

F. Unified Model

The proposed unified model jointly performs cell detec-
tion and region segmentation through a shared architecture
(Fig. 4). Building on the U-Net framework [7], we integrate
auxiliary supervision branches inspired by deep supervision
principles [10]. This design enables weight sharing between
tasks while addressing gradient vanishing through multi-scale
feature learning. The architecture combines a primary segmen-
tation branch with cell heatmaps regression outputs at multiple
resolutions.

1) Deep Supervision: Following [10], we generate down-
sampled ground truth maps using sum pooling (factors 2, 4, 8)
for auxiliary supervision. The total loss combines multi-level
predictions through uncertainty-weighted task balancing:

LHL =
1

2σ2
1

Lreg +
1

σ2
2

Lseg + log σ1σ2, (5)

where Lreg and Lseg denote regression and segmentation
losses, with σ1, σ2 as learnable uncertainty parameters. Deep
supervision aggregates scaled losses across resolution levels:

LDS =

3∑
i=0

1

2i
Li
HL. (6)

G. Implementation Details

The model is implemented in PyTorch Lightning. Training
employs the Adam optimizer (β = 0.9, initial learning
rate 10−4) for 400 epochs with cosine annealing, following
parameters from [15]. Batches of four patches (1024x1024px)
are processed through 3x3 convolutions.
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H. Post Processing

To enhance multi-scale consistency, we multiply probability
maps element-wise from deep supervision auxiliary branches
at various resolution levels. This MF (multi-scale fusion)
leverages complementary contextual information by reinforc-
ing features consistent across scales.

The combined probability map is passed through softmax
normalization to ensure valid probabilities and argmax clas-
sification to generate the final segmentation. A 3×3 mode
filter is subsequently applied to smooth region boundaries
while preserving anatomical edges through majority voting of
neighboring labels. In cell detection tasks, non-maximum sup-
pression is applied to identify local maxima within predicted
cell heatmaps for accurate cellular centroid localization while
eliminating duplicate detections.

I. Evaluation Metrics

Region segmentation performance is measured using class-
wise F1-score. Cell detection accuracy is assessed by matching
predictions to ground truth centroids within an 8px tolerance:
true positives (TP) represent matched pairs, false positives
(FP) represent unmatched predictions, and false negatives (FN)
represent unmatched ground truths. Precision ( TP

TP+FP ), recall
( TP
TP+FN ), and average precision are calculated from these

counts.

V. DISCUSSION

The results validate the efficacy of the proposed method in
improving precision-recall performance and F1 scores through
multiscale fusion.

a) Precision-Recall Analysis: Average precision (AP)
values indicate strong performance for all three biomarkers:
Nkp46, Tryptase, and CD3. The AP for CD3 was highest
at 0.88, followed by Tryptase at 0.86 and Nkp46 at 0.76.
These results demonstrate that the model effectively balances
precision and recall, particularly for CD3, which exhibits the
highest discriminative power among the tested biomarkers.
This finding suggests that the model handles class imbalances
effectively and reduces false positives for critical biomarkers.

b) Impact of Multiscale Fusion: The F1 scores reveal
that multiscale fusion consistently enhances model perfor-
mance across most region categories. In the tumor epithelial
region (TER), the F1 score improved from 0.907 to 0.908,
underscoring the robustness of the method in maintaining high
performance across categories. A significant improvement was
observed in the blood vessel category, where the F1 score
increased from no result to 0.656, highlighting the ability
of multiscale fusion to handle challenging regions that were
previously undetectable.

Moreover, stroma and white regions also exhibited slight
performance gains, with F1 scores increasing from 0.791 to
0.793 and 0.969 to 0.971, respectively. These results demon-
strate the success of the multiscale approach in refining pre-
dictions for diverse region types, even for those with already
strong baseline performance.

Fig. 5. Cell detection: precision recall curves for CD3, Tryptase, Nkp46

c) Comparison to Single Task Learning: It is important
to note that the Single Task Learning (STL) model sometimes
outperforms the proposed multi-task models, particularly in
categories like TER and Necrotic. However, the proposed
multi-task method (MTL + MF) delivers competitive perfor-
mance with 50% fewer parameters than training two separate
models (7 million parameters comparred to 14 millions for the
case of 2 separate models). This highlights the efficiency of
the multi-task approach in terms of computational resources,
while maintaining comparable or even improved performance
in certain regions.

d) Overall Significance: The incorporation of multiscale
fusion proves particularly advantageous for addressing seg-
mentation challenges in regions with lower baseline perfor-
mance. The results indicate the versatility of the technique
in improving F1 score. These findings suggest that multiscale
fusion is a valuable enhancement to segmentation pipelines,
offering complementary gains that enhance the model’s ap-
plicability in various contexts. Furthermore, the reduced pa-
rameter requirement in the multi-task approach provides an
added benefit, making it a more resource-efficient solution for
large-scale deployment.

e) Benchmarking: The proposed multitask framework
demonstrates competitive performance for tissue segmentation
and cell detection in histopathology images. To strengthen
the validity and relevence of our model, we intend to extend
this work by conducting a more comprehensive benchmarking
against recent state of the art multitask learning approaches.

VI. CONCLUSION

We introduced a unified model that leverages a multi-task
framework for segmenting regions of interest and detecting
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TABLE III
F1 SCORES FOR SINGLE TASK, MULTI-TASK WITHOUT MULTISCALE

FUSION, AND MULTI-TASK WITH MULTISCALE FUSION

Model Variant TER Necrotic Blood Vessels White Stroma
STL (U-net) 0.931 0.927 / 0.782 0.960
MTL 0.907 0.9142 / 0.791 0.969
MTL + MF 0.908 0.894 0.656 0.793 0.971

TABLE IV
AREA UNDER THE CURVE (AUC) FOR PRECISION-RECALL CURVES

AUC (Average Precision) Nkp46 Tryptase CD3
Single Task 0.78 0.90 0.93
Multi Task 0.76 0.86 0.88

immune cells in WSI. By incorporating deep supervision, our
approach accelerates training compared to training separate
models individually. To maintain a balance across the multiple
tasks, we employ homoscedastic uncertainty, ensuring task
equilibrium. To address class imbalance, we apply focal loss
for segmentation and weighted mean squared error loss for cell
detection. The results demonstrate competitive performance in
segmentation tasks, with notable improvement in the immune
cell detection task. Although Single Task Learning (STL)
outperforms in some segmentation categories, the multi-task
model achieves similar performance with 50% fewer param-
eters, offering a more efficient solution without compromising
quality. The extraction of spatial structures facilitates spatial
statistical analysis [16].

Fig. 6. Qualitative results comparison between with and without Multiscale
fusion
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