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Abstract—Histopathology image retrieval is a crucial task in
computational pathology, facilitating case-based reasoning and
aiding in diagnosis and research. This work presents an efficient
retrieval system based on Efficient Self-Supervised Vision Trans-
formers (EsViT), which generates robust feature representations
without labeled data. We fine-tune a pre-trained EsViT model
on multiple histopathology datasets, including BracS, CRC and
BATCH. The system extracts deep feature embeddings from
query images and retrieves similar cases from an indexed feature
database using k-nearest neighbors (k-NN) search. Experimental
results show that EsViT-based retrieval significantly outperforms
CNN-based approaches, achieving mAP@10 of 78.4% (BracS),
74.9% (CRC), and 79.1% (BATCH), with Precision@10 up to
81.2%. Additionally, EsViT reduces feature extraction time to
7.5 ms per image, making it faster and more scalable than CNN-
based methods. Our findings demonstrate that self-supervised
vision transformers enable accurate, scalable histopathology
image retrieval, with applications in digital pathology and clinical
decision support.

Index Terms—histopathology image retrieval, self-supervised
learning, vision transformers, EsViT, deep feature extraction,
medical imaging.

I. INTRODUCTION

Histopathology plays fundamental role in cancer diagnosis
and prognosis, where microscopic tissue images are analyzed
to enable pathologists to detect and classify abnormalities
[1]. With the increasing availability of digitized whole-slide
images (WSIs), computational methods for histopathology
image retrieval have gained significant attention [2]. Efficient
image retrieval systems can help find similar cases, supporting
clinical decision-making, research, and educational purposes
[3], [4].

Early content-based image retrieval (CBIR) systems for
histopathology images relied on handcrafted feature extraction,
using descriptors such as color histograms, texture features
(e.g., Gabor filters, Local Binary Patterns), and shape-based
representations. These methods typically employed Bag-of-
Visual-Words (BoVW) models or Support Vector Machines
(SVMs) to measure similarity between images. While com-
putationally efficient, these techniques suffered from limited
generalization due to their dependence on manually defined

features, which struggled to adapt to the high variability of
histopathology images.

The advent of deep learning significantly transformed
histopathology image retrieval, shifting the focus toward au-
tomated feature extraction using convolutional neural net-
works (CNNs) [5]. Pre-trained architectures such as VGG,
ResNet, and DenseNet have been widely adopted for feature
embedding generation, enabling more robust image represen-
tations [6]. These deep embeddings are then indexed using
k-nearest neighbor (k-NN) search or approximate nearest
neighbor methods to facilitate efficient retrieval [7]. Further
improvements have been achieved through fine-tuning CNNs
on domain-specific datasets [8], ensuring that feature repre-
sentations capture the intricate structures found in histopatho-
logical samples.

Beyond conventional CNN-based approaches, advanced
deep learning techniques have been explored to enhance
retrieval performance. Multi-scale CNNs and attention-based
architectures have been introduced to improve feature discrim-
ination by capturing both local and global tissue structures
[9]. In addition, graph-based deep learning models have been
proposed to represent spatial relationships between cellular
structures [10], allowing for more biologically meaningful
image retrieval. Generative adversarial networks (GANs) [11]
have also been used for data augmentation and feature re-
finement, helping to mitigate the challenges posed by small,
imbalanced datasets.

Despite these advancements, supervised deep learning mod-
els remain highly dependent on large annotated datasets, which
are often costly and time-consuming to obtain. To address this
challenge, self-supervised learning (SSL) has emerged as a
promising alternative, enabling models to learn rich feature
representations from unlabeled data. Techniques such as con-
trastive learning (e.g., SimCLR, MoCo) [12], [13], masked
image modeling, and clustering-based pretraining have demon-
strated strong performance in histopathology image analysis.
By leveraging SSL, retrieval models can reduce reliance on
labeled datasets while improving generalization to unseen
cases. This shift toward self-supervised and transformer-based
methods has the potential to further enhance histopathology
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Fig. 1. Overview of the proposed EsViT-based histopathology image retrieval system. The query image is first tokenized into patches and processed through
the EsViTs, to generate deep feature embeddings. These embeddings are then indexed using FAISS and stored in a structured database. During retrieval, a
similarity search using k-nearest neighbors (k-NN) is performed in the feature space to identify the most relevant histopathology images. The retrieved images
are ranked based on their similarity to the query image, supporting efficient and accurate case-based retrieval in digital pathology.

image retrieval, paving the way for more robust and scalable
solutions [14].

In this work, we propose a histopathology image retrieval
system based on Efficient Self-supervised Vision Transformers
(EsViT) [15]. EsViT is a self-supervised vision transformer
(ViT) [16] that efficiently learns visual representations by
using h-based encoding, region matching, and hierarchical fea-
ture extraction. By fine-tuning a pre-trained EsViT model on
histopathology datasets, we generate feature embeddings that
facilitate efficient and accurate image retrieval. Our contribu-
tions in this work are threefold. First, we integrate EsViT into
the histopathology image retrieval pipeline, leveraging self-
supervised learning to enhance feature representation without
the need for large annotated datasets. Second, we propose a
comprehensive retrieval pipeline that includes feature extrac-
tion, feature indexing, and similarity-based retrieval. Finally,
we employ an optimized k-nearest neighbor (k-NN) search
mechanism to efficiently retrieve the most relevant histopathol-
ogy images based on learned feature embeddings, ensuring
accurate and scalable image retrieval.

The paper is structured as follows: Section II describes the
proposed methodology, including model architecture, dataset
details, and retrieval mechanism. Section III presents experi-
mental results and performance comparisons. Finally, Section
IV concludes the paper with future directions.

II. METHODS

This section details our proposed histopathology image
retrieval system based on Efficient Self-Supervised Vision
Transformers (EsViT). The objective of the proposed system
is to enable efficient and accurate retrieval of histopathology
images based on visual similarity. The workflow consists of
four stages. First, feature extraction is performed using an Es-
ViT model, which generates compact feature embeddings from
input histopathology images. Second, indexing is conducted
by storing extracted feature vectors in a structured database

to facilitate fast search and retrieval. Third, query processing
involves passing a new histopathology image through the Es-
ViT model to obtain its corresponding feature representation.
Finally, retrieval is performed by applying a k-nearest neighbor
(k-NN) search to identify the most similar images from the
indexed dataset. The retrieval results are ranked based on
similarity scores, and the most relevant images are returned
to the user. An illustration of the proposed method is shown
in Figure 1.

A. Efficient Self-Supervised Vision Transformers
Traditional CNNs process images using hierarchical feature

extraction with local receptive fields, limiting their ability to
model long-range dependencies. Vision Transformers (ViTs)
address this limitation by treating images as sequences of
patches, enabling global context modeling. Given an input
image I ∈ RH×W×C , ViTs first tokenize the image into non-
overlapping patches of size P × P , forming a sequence of
N = HW

P 2 patches:

X = [x1, x2, . . . , xN ] , xi ∈ RP 2C

Each patch embedding is obtained by linear projection
through a shared learnable matrix We:

Z0 = XWe + Epos

where Epos is the positional encoding to retain spatial
information. The embeddings are processed throughmulti-head
self-attention (MHSA) layers, where the attention weights are
computed as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

where Q,K, V are the query, key, and value matrices
obtained by linear transformations of the input, and dk is the
dimensionality of the key vectors.
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EsViT extends this standard ViT framework by incorpo-
rating hierarchical token merging, where spatially adjacent
patches are progressively merged at different layers, reducing
the token count while enriching feature representations:

Zℓ+1 = fmerge(Zℓ)

where fmerge represents the hierarchical merging operation,
which down-samples tokens while preserving high-level se-
mantics. This approach significantly improves computational
efficiency without compromising feature expressiveness.

Additionally, EsViT is pretrained in a self-supervised man-
ner, combining region matching and contrastive learning.
Given two augmented views Ia, Ib of the same image, the
model is trained to maximize feature similarity between
corresponding patches while minimizing similarity between
different images:

Lcontrast = −
N∑
i=1

log
exp(sim(f i

a, f
i
b)/τ)∑N

j=1 exp(sim(f i
a, f

j
c )/τ)

where sim(u, v) = u·v
∥u∥∥v∥ is the cosine similarity, and τ is

the temperature scaling factor. This self-supervised pretraining
allows EsViT to learn domain-specific representations without
requiring labeled data, making it well-suited for histopathology
image retrieval.

B. Feature Extraction Using EsViT

Given an input histopathology image I , EsViT generates a
D-dimensional feature vector f(I) that captures its morpho-
logical characteristics. The feature extraction process consists
of three steps:

1) Hierarchical Transformer Encoding:
• The image is patch-tokenized and passed through

the multi-stage hierarchical ViT backbone.
• Each layer progressively aggregates spatial informa-

tion using attention mechanisms, leading to a multi-
scale feature representation:

Zℓ = MHSA(Zℓ−1) + Zℓ−1

where Zℓ represents the patch embeddings at layer ℓ.
2) Global Feature Pooling:

• The patch embeddings are aggregated using average
pooling to form a global image descriptor:

f(I) =
1

N

N∑
i=1

Zi

This ensures that the final feature vector encapsulates
both local and global histopathological structures.

3) Feature Normalization:

• To ensure scale invariance and improve retrieval
performance, the extracted feature vector is L2-
normalized:

f̂(I) =
f(I)

∥f(I)∥
This normalization step ensures that feature comparisons
are based solely on direction, making cosine similarity
an effective retrieval metric.

The final normalized feature vectors serve as compact and
discriminative representations, capturing the morphological
patterns and spatial relationships necessary for content-based
histopathology image retrieval.

C. Dataset Preprocessing and Augmentation

To fine-tune the EsViT model for histopathology im-
age retrieval, we utilize three publicly available datasets:
Breast Cancer Histopathology (BracS) [17], Colorectal Can-
cer Histopathology (CRC) [18], and BreAst Cancer Histol-
ogy (BATCH) [19]. These datasets contain a diverse set
of histopathology images that exhibit variations in staining,
magnification, and tissue morphology. To ensure consistency
between data sets, all images are resized at a fixed resolution
of 224 × 224 pixels. The pixel values are normalized to the
range [0,1] to standardize the input distributions.

Since self-supervised training benefits from diverse transfor-
mations, we apply a series of data augmentation techniques,
including random cropping and resizing, color jittering, Gaus-
sian blurring, and horizontal flipping. These augmentations
help improve the model’s ability to generalize across differ-
ent staining protocols and imaging conditions. For effective
training and evaluation, the dataset is split into three subsets:
80% for training, 10% for validation, and 10% for testing.
The training set is used to fine-tune EsViT on histopathology
images, while the validation set is utilized for hyperparameter
tuning. The test set is held out for final performance evaluation
to ensure unbiased assessment of the retrieval system.

D. Feature Indexing

After extracting feature vectors for all images in the dataset,
the representations are stored in a structured index using
FAISS (Facebook AI Similarity Search). FAISS is an opti-
mized similarity search library that allows fast retrieval of
high-dimensional feature embeddings. By leveraging FAISS’s
efficient data structures, the system can handle large-scale
histopathology repositories while maintaining low query la-
tency.

E. Query Processing and Similarity Search

Given a query image Iq the retrieval process begins by
computing its EsViT feature vector f(Iq). The system then
performs a cosine similarity search to measure the closeness
of the query image to indexed images. The similarity between
the query image and a database image Ii is computed as:

Similarity(Iq, Ii) =
f(Iq) · f(Ii)

∥f(Iq)∥∥f(Ii)∥
(1)
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Fig. 2. Illustration of the content-based image retrieval process. The left side shows the query histopathological image, while the right side displays the most
similar image regions retrieved by the method.

where Iq and f(Iq) are the feature vectors of the query
and database images, respectively. A k-nearest neighbor (k-
NN) search is conducted to retrieve the top-k most similar
images, which are ranked based on similarity scores. The
retrieved images are then displayed to the user, facilitating vi-
sual comparison and case-based reasoning. Example of query
processing and similarity search in histopathological images
is shown in Figure 2.

F. Implementation Details

The system is implemented using PyTorch for deep learning
and FAISS [20] for efficient retrieval. The EsViT model is
initialized with pretrained weights from ImageNet and fine-
tuned on histopathology datasets using the Adam optimizer
with a learning rate of 1e-4. The batch size is set to 32, and
training is conducted on an NVIDIA A100 GPU, requiring
approximately 12 hours for fine-tuning. To ensure stable
training, a learning rate warm-up strategy is employed for the
first five epochs, followed by a cosine decay schedule.

III. RESULTS AND DISCUSSION

To evaluate the retrieval performance of our system, we
utilize a set of standard metrics commonly used in content-
based image retrieval tasks. Mean Average Precision at k
(mAP@k) is employed to quantify the mean of the average
precision scores for the top-k retrieved images across all
queries, providing an overall measure of ranking accuracy.
Additionally, Precision@k is computed to determine the pro-
portion of relevant images within the top-k retrieved results,
reflecting the system’s ability to prioritize relevant matches. To
further assess ranking quality, we use Normalized Discounted
Cumulative Gain (nDCG@k), which assigns higher relevance
scores to correctly retrieved images that appear earlier in the
ranked list, ensuring that more relevant cases are prioritized.

Beyond accuracy, we analyze computational efficiency by
measuring feature extraction time, which captures the time
required to generate feature representations from input images,
and retrieval latency, which quantifies the total time taken to
search and rank the most similar images from the indexed
database.

A. Quantitative Results

Our proposed EsViT-based retrieval system achieves the
highest mAP@10 across all datasets, showing a 9.5% improve-
ment over SimCLR and 13-16% improvement over traditional
CNN-based methods. Additionally, the retrieval latency of our

system is significantly lower ( 8.9 ms) compared to SimCLR
( 16.7 ms) and DenseNet121 ( 15.3 ms), making it a scalable
solution for large-scale histopathology repositories.

One of the key advantages of EsViT is its ability to
learn representations from unlabeled data. To quantify the
impact of self-supervised pretraining, we compare EsViT with
and without pretraining. Table 2 shows that pretraining on
ImageNet improves retrieval performance by 5-7% across all
metrics, highlighting the benefits of self-supervised represen-
tation learning.

IV. CONCLUSION AND DISCUSSION

In this work, we present an efficient histopathology image
retrieval system based on EsViT, leveraging self-supervised
learning to extract discriminative feature representations with-
out requiring large labeled datasets. First, Vision Transformers
(ViTs) process images as sequences of patches, enabling
them to model long-range dependencies critical for analyzing
intricate tissue structures. Second, self-supervised learning
allows EsViT to learn domain-specific representations without
requiring large labeled datasets, addressing one of the major
challenges in medical image retrieval. Third, EsViT’s hier-
archical multi-stage design enhances feature expressiveness
while maintaining low computational cost.

Experimental results demonstrate that EsViT outperforms
CNN-based approaches, achieving up to 16% higher retrieval
accuracy in mAP@10, Precision@10, and nDCG@10, while
maintaining lower feature extraction time ( 7.5 ms) and re-
trieval latency ( 8.9 ms). The experimental results demonstrate
that EsViT significantly outperforms CNN-based models in
histopathology image retrieval, achieving superior retrieval
accuracy and computational efficiency. This efficiency gain
is attributed to optimized token processing, which reduces
redundant computations while preserving discriminative fea-
tures essential for content-based retrieval. Qualitative analysis
further confirms that EsViT retrieves morphologically relevant
histopathology images, highlighting its potential for clinical
decision support and pathology research.

However, several areas for improvement remain. The model
currently relies on ImageNet pretraining, which may introduce
domain biases due to differences between natural images
and histopathology images. Future work should explore pre-
training on large-scale histopathology datasets to improve
domain adaptation. Additionally, the retrieval system employs
cosine similarity, which, while effective, may not fully capture
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TABLE I
RETRIEVAL PERFORMANCE COMPARISON ON HISTOPATHOLOGY DATASETS

Model Dataset mAP@10 ↑ Precision@10 ↑ nDCG@10 ↑ Feature Extraction Time (ms) ↓ Retrieval Latency (ms) ↓
ResNet50 + k-NN BracS 62.3 65.1 71.2 9.8 14.2
ResNet50 + k-NN CRC 58.4 61.3 68.5 9.5 13.8
ResNet50 + k-NN BATCH 60.2 63.7 70.1 9.6 13.9
DenseNet121 + k-NN BracS 65.2 68.7 74.5 11.1 15.3
DenseNet121 + k-NN CRC 60.9 64.4 70.8 10.8 14.9
DenseNet121 + k-NN BATCH 63.1 67.0 72.9 10.9 15.1
SimCLR + k-NN BracS 68.9 72.3 77.8 14.2 16.7
SimCLR + k-NN CRC 63.5 67.2 73.1 13.8 16.4
SimCLR + k-NN BATCH 65.8 70.1 75.3 14.0 16.5
EsViT + k-NN BracS 78.4 81.2 85.6 7.5 9.1
EsViT + k-NN CRC 74.9 77.6 83.2 7.1 8.7
EsViT + k-NN BATCH 79.1 82.4 86.3 7.2 8.9

TABLE II
EFFECT OF SELF-SUPERVISED PRETRAINING ON RETRIEVAL PERFORMANCE.

Model Pretraining mAP@10 ↑ Precision@10 ↑ nDCG@10 ↑
EsViT (No Pretraining) None 72.1 74.5 80.2
EsViT (Pretrained on ImageNet) Self-Supervised 78.4 81.2 85.6

complex morphological variations. Contrastive learning-based
retrieval strategies or learnable similarity metrics could further
refine ranking accuracy. Another promising direction is the
development of a multi-modal retrieval framework that inte-
grates histopathology images with clinical metadata, providing
more comprehensive search capabilities and improving clinical
applicability.

In summary, this work demonstrates the effectiveness of
self-supervised vision transformers for histopathology image
retrieval, offering an accurate, scalable, and efficient alter-
native to CNN-based methods. By reducing reliance on la-
beled data and improving retrieval efficiency, EsViT-based
retrieval systems can contribute to advancements in AI-assisted
pathology and precision medicine, supporting both clinical
workflows and pathology research.
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