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Abstract—Medical imaging studies leveraging deep learning
often face data scarcity. This project explores the application
of Latent Diffusion Models (LDMs) for generating synthetic
yet realistic T1-weighted, T2-weighted, and FLAIR MRI brain
images from textual prompts. To train our model, we constructed
a dataset of over 40,000 MRI scans of healthy subjects, each
paired with slice-specific textual descriptions. This dataset was
derived from four publicly available sources: Kirby, IXI, OASIS,
and IBSR. The IBSR dataset further enables the generation of
brain structure segmentations, which are used to automatically
create image-specific textual annotations. These annotations in-
clude legend descriptions of anatomical structures, demographic
metadata such as age and sex, and imaging modality details
specifying the scan plane and MRI sequence. To enhance textual
conditioning, we modified an LDM to handle long prompts
with a vocabulary specialized for the medical domain. Model
performance is evaluated using MS-SSIM for the VAE component
and FID for the diffusion-generated images. Experimental results
demonstrate that using only textual descriptions, our method can
generate realistic MRI scans, highlighting the potential of LDMs
for medical imaging synthesis. The LDM code is available at
https://gitlab.in2p3.fr/chantal.muller/dalle-brain.

Index Terms—Latent Diffusion Models, Text-Guided Image
Generation, MRI Slice Generation.

I. INTRODUCTION

Recent advances in vision-language models, such as CLIP
[1], have enabled unified text-image representations, leading
to powerful text-to-image generative models like DALL-E and
Latent Diffusion Models (LDMs) [2]. While these models
excel at synthesizing realistic images, their application to med-
ical imaging remains limited due to the need for anatomical
precision and expert validation.

Several approaches have explored text-conditioned medi-
cal image synthesis, including transformer-based models [3],
vision-language conditioning [4], and contrastive learning [5].
However, these methods often rely on limited paired text-
image datasets, making text-driven medical image generation
particularly challenging. Here, we propose a text-conditioned
LDM trained from scratch for brain MRI synthesis to address
this. By employing contrastive learning and transformer-based
text encoders, the model can effectively capture semantic
information, enabling the generation of realistic and anatomi-
cally coherent MRI slices.

Our approach generates 2D brain MRI slices paired with
anatomical descriptions to ensure alignment with clinical

structures. Section II describes the 2D image-text database,
including dataset composition and textual annotation. Section
III presents the image encoder-decoder, detailing the VAE-
based compression of MRI slices. Section IV introduces the
Text-Conditioned Latent Diffusion Model (LDM), covering
its architecture, training, and text-conditioning modifications.
Section V analyzes qualitative and quantitative results, eval-
uating reconstruction performance and the role of textual
guidance. Finally, we discuss key findings and future research
directions.

II. BUILDING THE 2D IMAGE-TEXT DATABASE

The development of a generative AI model requires a large
and diverse training dataset. In this study, we first need brain
MRI slices of healthy subjects paired with their anatomical
descriptions. Publicly available MRI datasets with textual
annotations are scarce.

However, such descriptions can be automatically generated
if brain structure segmentation is performed beforehand. La-
beled MRI images provide access to anatomical structures, and
with voxel size information, their volumes can be computed.
Only a few datasets of healthy subjects exist, and even fewer
include brain segmentations.

To construct a comprehensive dataset, we start with the
IBSR dataset [6], which consists of 18 T1-weighted MRI scans
with corresponding brain segmentation maps. We further ex-
pand this dataset with unsegmented MRI scans from multiple
sources covering different sequences: OASIS [7] (77 T1-w.
MRI scans), IXI [8] (64 T2-w. MRI scans), and Kirby [9] (42
FLAIR MRI scans).

A. Generation of labeled MRI Images

To increase the number of available labeled MRI images
while preserving anatomical consistency, we adopted a simple
yet effective segmentation approach. While tools like SynthSeg
and FreeSurfer are available, these offer fine-grained segmen-
tation that exceeds our current needs, both in complexity and
computational demand. Our objective is limited to identifying
major brain structures corresponding to the IBSR labeling
scheme, for which a lightweight method based on 3D affine
registration proves sufficient and considerably faster.
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1) Registration and Segmentation Process
We performed affine registration of the unlabeled MRI scans

(OASIS, IXI, Kirby) onto the fixed IBSR labeled 3D images,
using the ANTs registration framework [10]. Before registra-
tion, skull stripping was applied to ensure accurate multimodal
alignment. The same affine transformation was applied to
both the images and their corresponding segmentations. This
process generated 18 × 77 new labeled T1-weighted MRI, 18
× 64 labeled T2-weighted MRI, and 18 × 42 labeled FLAIR
MRI. The inverse transformation was also applied, registering
IBSR onto OASIS, IXI, and Kirby, further increasing the
dataset size (see Fig. 1).

2) Atlas Generation
To enhance anatomical consistency, we created three new

atlases using a majority voting scheme among the 18 registered
IBSR labels. This resulted in OASIS Atlas (77 labeled T1-w.
MRI), IXI Atlas (64 labeled T2-w. MRI) and Kirby Atlas (42
labeled FLAIR MRI). By iteratively changing the reference
fixed atlas and the moving databases, we further increased
the number of labeled images in our dataset (see Fig. 2). In
total, this procedure resulted in a dataset of 40,602 labeled
3D MRI scans, corresponding to approximately 25.6 million
axial, sagittal, and coronal slices.

Figure 1: Creation of labeled MRI images from IBSR atlas
and generation of new atlases.

Figure 2: Generated atlases from IBSR registrations.

B. Generation of Textual Descriptions

The IBSR atlas is associated with a lookup table mapping
integer labels in the segmented image to the corresponding
anatomical structure names. For each registered MRI volume,
metadata such as voxel size, MRI sequence type, subject
gender, and age were available for both the moving and fixed
images. Using these segmentations, we automatically gener-
ated structured descriptions for each MRI slice by exporting
anatomical structures and their volumes (in mm3) into CSV
format. Finally, natural language descriptions were generated
using template-based text synthesis. To introduce prompt
variability, 20 sentence templates were randomly selected to
describe each slice (see Fig. 3).

Figure 3: Example of a generated slice-text description pair.

C. Resulting Database

The final dataset generated through our processing pipeline
comprises 40,600 labeled MRI scans from healthy subjects,
covering multiple MRI modalities. Each MRI volume is paired
with anatomical text descriptions, ensuring that each slice
retains meaningful structural annotations. This results in an
extensive dataset containing approximately 26 million text-
image pairs, providing a diverse and well-annotated resource
for training generative AI models in medical imaging.

III. IMAGE ENCODER/DECODER

A. Variational AutoEncoder (VAE)

A VAE is an encoder-decoder architecture designed to learn
a compact latent representation of input data. The encoder
maps an image into a lower-dimensional latent space by
estimating a probability distribution with a mean vector µ and
a standard deviation vector σ. The decoder reconstructs an
image from a latent sample, ensuring that the representation
captures essential data characteristics [11] (see Fig. 4).

In our generative model, the VAE acts as a compression
mechanism, encoding MRI slices into latent space for the
diffusion process (see Fig. 6). After denoising, the VAE
decoder reconstructs the image back to the pixel domain.

B. Loss

Given an input image x ∈ RH×W×1, the encoder maps it
into a latent representation with reduced spatial dimensions
z ∈ Rh×w×c, z = E(x). The decoder then reconstructs the
image from its latent representation, x̃ = D(z) = D(E(x)).
The VAE training is driven by the loss function (Eq. 1):
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Figure 4: Variational Autoencoder.

LV AE = min
E,D

max
ψ

(
Lrec (x, D (E (x)))

− Ladv (D (E (x))) + logDψ (x)

+ Lreg (x;E,D)
) (1)

where
• Lrec : perceptual reconstruction loss measuring difference

between original and reconstructed images;
• −Ladv + logDψ(x): adversarial loss discouraging trivial

solutions;
• Lreg regularization loss minimizing KL divergence be-

tween latent space and a standard Gaussian distribution.

C. Training Setup

The VAE was trained using 40,000 axial MRI slice, divided
into training set with 24,000 images, validation set with 6,000
images and test set with 10,000 images.
Hyper parameters: epochs=100; batch size=26; GPU=32GB;
image size= (256, 256); latent dimension= (64, 64, 1) and total
training time= ∼ 40 hours.

D. Evaluation of VAE

This section evaluates the VAE’s performance in encoding
and decoding MRI slices, ensuring that reconstructed images
retain key anatomical features. We assess the model both
qualitatively and quantitatively by comparing the reconstructed
images x̃ = D(E(x)) with the original inputs x.

1) Qualitative results
Fig. 5 presents a visual comparison between the original

MRI slices (top row) and their VAE-reconstructed versions
(bottom row). The high visual similarity confirms that the VAE
successfully preserves essential anatomical structures.

2) Quantitative results
To objectively assess reconstruction fidelity, we use the

Multi-Scale Structural Similarity Index Measure (MS-SSIM)
[12], which evaluates image similarity across multiple resolu-
tions, incorporating luminance, contrast, and structural com-
ponents.

MS-SSIM(x, y) = [lM (x, y)]
αM ·

M∏
j=1

[Cj(x, y)]
βj ·[Sj(x, y)]γj

(2)
where

• x, y : two images being compared.

Figure 5: Comparison between original MRI slices (top) and
their VAE reconstructions (bottom).

• M : number of scales used in the multi-scale SSIM
computation.

• lM (x, y) : luminance comparison function at the coarsest
scale.

• Cj(x, y) : contrast comparison function at scale j.
• Sj(x, y) : structural similarity function at scale j.
• αM , βj , γj : exponents controlling the relative importance

of luminance, contrast, and structure at different scales.
Table I presents MS-SSIM scores for 10,000 randomly

selected MRI slices from both the training and test datasets.
The high similarity scores (∼ 0.98) confirm that the VAE ac-
curately reconstructs input slices while preserving anatomical
details.

Table I: MS-SSIM scores for VAE reconstruction.

Dataset Train (10,000 slices) Test (10,000 slices)
MS-SSIM [0-1] ↑ 0.984 0.977

IV. TEXT-CONDITIONED LATENT DIFFUSION MODEL

We build upon the MONAI 2D Latent Diffusion Model
(LDM) tutorial, which does not incorporate text conditioning
[13], [14]. This baseline model focuses solely on image-based
generation. To extend its capabilities, we modify the original
code by integrating text conditioning.

A. Architecture

LDMs operate in a compressed latent space rather than
processing high-dimensional pixel data. Our architecture (Fig.
6) includes: (i) a VAE encoding MRI slices into a latent
representation, (ii) a text encoder converting descriptions into
embeddings, and (iii) a Diffusion Model refining noisy repre-
sentations, which the VAE decodes into MRI images.

B. Text Embedding Extraction with a tokenizer

To generate text-conditioned MRIs, we use a WordPiece
tokenizer and a transformer pre-trained on biomedical liter-
ature. The input text Torig is tokenized into contextualized
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Figure 6: LDM architecture conditioned by textual cross-attention.

embeddings, which condition the diffusion model, whether
from a contrastively trained model (PubMedCLIP [15]) or a
language model (BiomedBERT [16]).

Embeddings = tokenizer(Torig) ∈ RT×dt (3)

where:
• T : number of tokens.
• dt = 768 : text embedding dimension.
Here, our batch of embeddings ∈ R(B,T,768) represents per-

token contextual embeddings (with B the batch size).

C. Cross-Attention Mechanism

To align textual and visual representations, we integrate
cross-attention into the LDM. Queries Q ∈ R(B,Nspatial,Cfeat)

come from U-Net latent features (Nspatial = h′ × w′, Cfeat =
768), while keys and values K,V ∈ R(B,T,768) originate from
tokenizer embeddings. The attention mechanism follows the
query-key-value formulation:

Attention(Q,K, V ) = softmax
(
QKT

√
dt

)
V. (4)

This mechanism injects semantic content from the text into
the latent image features, guiding the denoising process toward
text-consistent representations.

The U-Net is configured to apply the cross-attention mech-
anism across its last two levels.

D. Comparison of Text Encoders

We evaluate two text encoders for this purpose: Pub-
MedCLIP and BiomedBERT. PubMedCLIP is constrained to
77 tokens, which limits its capacity for handling long-form
anatomical descriptions. In contrast, BiomedBERT can process
up to 512 tokens, providing a richer and more detailed text rep-
resentation. Furthermore, BiomedBERT achieves comparable

performance with half the training epochs required by Pub-
MedCLIP. Based on these advantages, we select BiomedBERT
as our primary text encoder.

E. Loss Function
The LDM is trained by minimizing the following objective

function (Eq. 5):

LLDM = Eϵ(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, τθ(y))∥22

]
(5)

where ϵ represents the added noise and ϵθ(zt, t, τθ(y)) the
noise predicted by the U-Net at time step t.

F. Training Setup
The LDM was trained on 40,000 axial MRI slices, with

the following dataset split: 24,000 images for training, 6,000
images for validation and 10,000 images for test.
Hyper parameters: Pre-trained VAE + LDM conditioned
using BiomedBERT. 100 epochs, batch size 40, GPU 32GB,
image size: (256, 256), latent dimension: (64, 64, 1), training
time: 14d 22h 9m (∼358 hours).

V. RESULTS AND DISCUSSION

A. Evaluation Metric
The generative quality is assessed using the Fréchet In-

ception Distance (FID) (Eq. 6), which quantifies the feature
distribution distance between generated and real MRI slices in
an InceptionV3-based embedding space [17].

FID = ∥µx − µy∥22 + Tr
(
Σx +Σy − 2 (ΣxΣy)

1
2

)
(6)

where:
• µx and µy : mean vectors of the feature distributions for

generated and real images, respectively.
• Σx and Σy : covariance matrices of the feature distribu-

tions for generated and real images.
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B. Generated Image Evaluation

We evaluate 1,000 synthetic MRI slices generated from
training/validation dataset descriptions and 1,000 synthetic
slices from test descriptions against 10,000 real slices from the
respective datasets. Fig. 7 illustrates 2D axial slices generated
using our text-conditioned LDM. The first row corresponds to
prompt 1, and the second row to prompt 2. Based on input
prompts, the model accurately distinguishes MRI sequence
types (T1-w vs. T2-w).

(a) Prompt 1 (P1) (b) T1-w. from P1 (c) T2-w. from P1

(d) Prompt 2 (P2) (e) T1-w. from P2 (f) T2-w. from P2

Figure 7: T1-w. and T2-w. MRI slices generated by prompt-
conditioned LDM.

C. Quantitative Results

Table II presents FID scores comparing 1,000 synthetic
MRI slices to 10,000 real slices. The model achieves low FID
scores, indicating high fidelity and structural consistency.

Table II: FID scores for LDM-generated MRI slices.

Train/Val (1,000 vs 10,000) Test (1,000 vs 10,000)
FID ↓ 16.9 17.9

The FID scores indicate strong generalization. The first
column reports results for prompts seen during training, while
the second column evaluates unseen prompts. Despite this, the
model maintains low FID scores (16.9 for known prompts,
17.9 for unseen prompts), demonstrating its ability to synthe-
size realistic MRI slices from novel textual inputs.

D. Discussion

Our results confirm that the text-conditioned LDM ef-
fectively synthesizes realistic MRI slices while maintain-
ing anatomical coherence. The low FID scores suggest the
model learns meaningful representations, producing images
that closely resemble real MRI scans. Qualitative evaluation
(Fig. 7) further highlights its capability to generate diverse
MRI slices based on textual descriptions. The model accurately
captures anatomical structures described in the prompts and
differentiates MRI sequence types, validating the effectiveness

of the conditioning mechanism. While these results are promis-
ing, limitations remain. FID measures statistical similarity
but does not fully assess clinical relevance. Future work
includes expert radiologist evaluation to validate anatomical
and pathological consistency.

VI. CONCLUSION

We introduced a text-conditioned LDM for synthetic brain
MRI generation, leveraging anatomical descriptions for con-
ditioning. By integrating BiomedBERT embeddings and a
pre-trained VAE, our approach produces high-fidelity MRI
slices, validated through qualitative and quantitative evalua-
tions. Results show that text-driven diffusion models generate
realistic, anatomically coherent medical images, addressing
data scarcity in medical imaging. Clinical validation remains
crucial to assess diagnostic utility. Future work includes expert
radiologist evaluation for anatomical accuracy, extending the
model to 3D MRI generation, and integrating pathological
conditions to simulate disease progression.
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