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ABSTRACT

Obstructive sleep apnea (OSA) is a significant risk factor
for hypertension, primarily due to intermittent hypoxia and
sleep fragmentation. Predicting whether individuals with
OSA will develop hypertension within five years remains
a complex challenge. This study introduces a novel deep
learning approach that integrates Discrete Cosine Transform
(DCT)-based transfer learning to enhance prediction accu-
racy. We are the first to incorporate all polysomnography
signals together for hypertension prediction, leveraging their
collective information to improve model performance. Fea-
tures were extracted from these signals and transformed into
a 2D representation to utilize pre-trained 2D neural networks
such as MobileNet, EfficientNet, and ResNet variants. To
further improve feature learning, we introduced a DCT layer,
which transforms input features into a frequency-based rep-
resentation, preserving spectral information and improving
robustness. The frequency-domain approach improves gener-
alization in small datasets. By strategically placing the DCT
layer at deeper truncation depths within EfficientNet, our
model achieved a best area under the curve (AUC) of 72.88%,
demonstrating the effectiveness of frequency-domain feature
extraction and transfer learning in predicting hypertension
risk in OSA patients over a five-year period.

1. INTRODUCTION

Obstructive sleep apnea (OSA) is a condition characterized
by intermittent hypoxia and sleep fragmentation, which prop-
agates hypertension via mechanisms such as sympathetic ac-
tivation and inflammation. OSA also raises the likelihood of
developing hypertension during nighttime [1, 2].

Notably, specific patterns of apnea, such as Rapid Eye
Movement (REM) sleep-related OSA, could contribute to
OSA-associated hypertension [3]. Additional sleep-related
factors, like reduced slow-wave sleep (SWS) and short sleep
duration, are associated with hypertension, independent of
OSA [4, 5].

Ren and colleagues conducted a study examining the
association between sleep duration, obstructive sleep apnea

(OSA), and hypertension in a group of 7,107 OSA patients
and 1,118 primary snorers. The findings from polysomnogra-
phy indicated that individuals who slept for 5 to 6 hours had
a 45% risk of developing hypertension, while those who slept
fewer than 5 hours had an 80% increased risk, independent of
other influencing factors [6].

Treating obstructive sleep apnea (OSA) has been shown
to lower the risk of developing hypertension [7]. However,
accurately predicting the onset of hypertension in individuals
with OSA remains a challenge due to the complex pathogen-
esis of hypertension.

We developed a deep learning model that predicts hy-
pertension up to five years after OSA diagnosis using trans-
formed polysomnography signals and static clinical features
(e.g., age, sex, BMI, blood pressure). By integrating signal
and clinical data, our approach supports precision medicine
for early hypertension risk assessment.

We hypothesized that a comprehensive approach involv-
ing the simultaneous input of time-series physiological sig-
nals measuring sleep (EEG), ventilatory impairment and hy-
poxia, and cardiac autonomic dysregulation (electrocardio-
gram and photoplethysmography-derived heart rate variabil-
ity and pulse transit time) could preserve the temporal corre-
lations between multiple physiological perturbations in OSA
and provide a robust prediction of incident hypertension [8].
These signals were included in polysomnography, a widely
available diagnostic test for OSA. Thus, we extracted multi-
ple features from the polysomnography signals in the Sleep
Heart Health Study (SHHS) participants with moderate to se-
vere OSA [9, 10].

We applied artifact removal and bandpass filtering before
feature extraction.

The proposed methodology underwent a rigorous evalua-
tion through a 10-fold cross-validation approach to examine
the model’s generalizability. The results were subsequently
summarized, comparing models and methods to cutting-edge
approaches.
Our main contributions are summarized as follows:

• We develop a DCT-based convolution framework that
replaces the complex-valued Discrete Fourier Trans-
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form (DFT) with a real-valued, orthogonal DCT,
thereby simplifying convolution operations and pre-
serving crucial frequency information in polysomnog-
raphy signals.

• We introduce threshold-based nonlinearities (soft and
hard thresholding) in the DCT domain, preventing the
loss of important negative-frequency coefficients that
standard ReLU would discard.

• We embed the DCT layer within a truncated Efficient-
Net architecture, using time-windowed feature extrac-
tion and transfer learning to efficiently process multi-
channel polysomnography data.

• We demonstrate that this end-to-end model accurately
predicts long-term hypertension risk, providing a ro-
bust framework for precision healthcare in OSA.

2. RELATED WORKS

In recent years, there has been a growing recognition of the
limitations associated with conventional manual sleep stage
scoring, which simplifies the analysis of electroencephalo-
gram (EEG) temporospectral and frequency domains. This
scoring method is inherently subjective and can lead to vari-
ations between different scorers due to the application of
visual-based rules [11]. Researchers used power spectral
density (PSD) analysis of EEG signals, which examines sleep
EEG microarchitecture. This approach enables the decom-
position of EEG brain waves across various power frequency
bands, ranging from slow wave activity (delta EEG power,
1–4 Hz) to fast-frequency activity (beta EEG power, 18–30
Hz), achieved through fast Fourier transform algorithms. At
a microarchitecture level, slow wave sleep (SWS) is charac-
terized by high delta power, indicative of deep sleep. Quan-
titative EEG analysis may yield more sensitive biomarkers
for adverse health outcomes in OSA compared to traditional
sleep scoring methods [12, 13, 14, 15].

Low delta power during non-REM sleep has been linked
to increased hypertension risk, reinforcing the role of SWS
in blood pressure regulation [16]. Another study using only
SpO2 features with time-frequency analysis achieved 84.3%
AUC in predicting hypertension among OSA patients [17].

Ruitong et al. adopted a pulmonary physiology-based
approach to predicting the onset of hypertension by including
pulmonary function measurements and polysomnography-
derived indices using a penalized regression and Elastic
Net model [18]. A recent study introduced cSP (sleep and
pulmonary) phenotypes, which combines spirometry and
overnight polysomnography measures to predict hyperten-
sion occurrence in the SHHS [12]. The SHHS dataset en-
compasses a variety of physiological signals, including sleep
EEG, electrocardiogram (ECG), electromyogram (EMG),

ventilatory effort, nasal airflow, photoplethysmography-
derived oximetry, snoring, and body position. Employing
rigorous signal processing techniques, such as filtering, seg-
mentation, and feature extraction, our analysis aimed to un-
ravel the intricate patterns embedded within these signals
[9, 10].

3. METHODOLOGY

We propose a feature-based deep learning method for predict-
ing incident hypertension in patients with obstructive sleep
apnea (OSA). Convolution operations are typically performed
in the time (or spatial) domain, but they can also be imple-
mented more efficiently in the frequency domain via element-
wise multiplication. Let y = w ∗ x be the convolution of a
filter w and signal x. By applying the DFT, we obtain:

Y [k] = W [k] ·X[k], (1)

where Y , W , and X are the DFTs of y, w, and x, respec-
tively. However, the DFT produces complex-valued coeffi-
cients, complicating the use of conventional non-linearities
such as ReLU. To avoid this, we use the Discrete Cosine
Transform (DCT), a purely real and orthogonal transform,
which preserves signal energy in the frequency domain while
reducing redundancy.

Fig. 1: The structure of the DCT block. V is a trainable ma-
trix that adapts frequency features based on training data.

A key feature of our approach is the replacement of traditional
convolutions with a DCT-based convolution block (illustrated
in Fig. 1). Rather than applying ReLU activations in the DCT
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domain—which would discard negative-frequency informa-
tion—we incorporate a soft thresholding operator. Originally
introduced in image denoising, soft thresholding effectively
prunes smaller (potentially noisy) DCT coefficients while
retaining both positive and negative high-amplitude com-
ponents [19]. In our PyTorch implementation, it is defined
as:

SoftThreshold(x, τ) = sign(x) max
(
|x| − τ, 0

)
. (2)

By applying soft thresholding in place of ReLU, we preserve
crucial frequency details that might otherwise be lost, thereby
improving the expressive capacity of the model.

Another important characteristic of the DCT layer is its or-
thogonality. Because each transform basis (cosine wave)
is orthogonal to the others, the resulting representation can
decorrelate input features, often leading to improved general-
ization and numerical stability compared to complex-valued
transforms.

To reduce computational overhead, we do not operate on raw
polysomnography signals directly. Instead, each signal (EEG,
ECG, respiratory, etc.) is first preprocessed (e.g., 0.5–40 Hz
for EEG) and then segmented into time windows. From each
window, we extract a set of representative features, including:

• Counts and durations of respiratory events (apneas, hy-
popneas) and arousals,

• Statistical descriptors (mean, standard deviation, skew-
ness, kurtosis),

• Heart rate variability (HRV) metrics derived from ECG
signals.

Arranging the extracted features from windowed segments se-
quentially preserves coarse temporal structure. Subsequent
convolutional layers learn temporal-frequency patterns across
windows, which are further enhanced by the DCT layer.

HRV Feature Computation. After detecting R-peaks within
each window, we obtain the sequence of R-R intervals,
{RRi}Ni=1. Let RR be the mean R-R interval:

RR =
1

N

N∑
i=1

RRi. (3)

We then compute the following standard HRV metrics:

SDNN =

√√√√ 1

N

N∑
i=1

(
RRi −RR

)2
, (4)

RMSSD =

√√√√ 1

N − 1

N−1∑
i=1

(
RRi+1 −RRi

)2
, (5)

pNN50 =
NN50

N − 1
× 100%, (6)

NN50 =

N−1∑
i=1

1
(
|RRi+1 −RRi| > 50 ms

)
. (7)

Here, N is the number of valid R-R intervals within the win-
dow. SDNN measures overall variability, RMSSD captures
short-term fluctuations, and pNN50 reflects the percentage of
adjacent R-R intervals that differ by more than 50 ms.

We concatenate all window-level features into a 2D array
(features×windows), treating it as a pseudo-image [20]. This
2D format enables use of CNNs with DCT-enhanced features.

By replacing DFT with real-valued DCT and using soft
thresholding, our method preserves informative frequency
components while leveraging a truncated CNN and spec-
tral features for effective hypertension prediction in OSA
patients.

4. RESULTS

To evaluate the performance of our feature-based approach,
we employed 10-fold cross-validation with various time win-
dow lengths ranging from 9 to 60 minutes. We present here
the results for 60-minute and 10-minute intervals, as well as
a brief investigation into optimized shorter windows around
10 minutes. We then discuss how adding a Discrete Cosine
Transform (DCT) block at different depths within a truncated
EfficientNet affects performance.

4.1. 60-Minute Interval Results

Table 1 summarizes the accuracy and AUC for the 60-
minute interval. Among the feature-based models, Fea-
ture EffNet-B0 achieved the highest accuracy (68.66%) and
AUC (68.66%). Other models had lower sensitivity but
higher specificity

Table 1: Performance of Models at the 60-Minute Interval

Model Accuracy (%) AUC (%)
Feature EffNet-B0 68.66 68.66
Feature ResNet-10 62.69 59.70
Feature ResNet-18 61.19 55.22
Feature MobileNet-v2 65.67 61.19

4.2. 10-Minute Interval Results

A shorter 10-minute window offers more granular insight into
sleep data. As shown in Table 2, Feature EffNet-B0 achieved
the highest accuracy (68.66%) and AUC (71.64%).
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Incorporating static features similarly provided small
boosts in certain metrics. 10-minute windows offer a good
trade-off between data and performance.

Table 2: Performance of Models at the 10-Minute Interval

Model Accuracy (%) AUC (%)
Feature EffNet-B0 68.66 71.64
Feature ResNet-10 62.69 60.70
Feature ResNet-18 61.19 57.31
Feature MobileNet-v2 65.67 63.43

4.3. DCT Block Placement at Different Truncation Depths

We evaluated how inserting the DCT2D layer at different
truncation depths in EfficientNet-B0 affects predictive per-
formance. Specifically, we integrated the DCT block after
the third, fourth, fifth, or sixth building block in the network.
Table 3 presents the best observed accuracy and AUC for
each placement.

Table 3: Best Accuracy and AUC by Inserting the DCT2D
Block at Different EfficientNet-B0 Depths

Model Accuracy (%) AUC (%)
DCT@3 (after 3rd block) 68.66 70.81
DCT@4 (after 4th block) 69.66 70.73
DCT@5 (after 5th block) 68.12 72.79
DCT@6 (after 6th block) 69.86 72.88

As shown in Table 3, placing the DCT layer at deeper lev-
els (DCT@5 or DCT@6) yields higher AUC values (72.29%
and 72.88%, respectively), with DCT@6 also achieving the
top accuracy (69.86%). This suggests that mid- to late-stage
feature maps in EfficientNet-B0 may benefit more from the
frequency-domain transform, likely due to increasingly ab-
stract representations of the polysomnography data at deeper
layers. Ultimately, the choice between prioritizing accuracy
or maximizing AUC may depend on clinical considerations,
such as avoiding false negatives versus improving overall pre-
dictive discrimination.

4.4. Comparison with State-of-the-Art Methods

Table 4 compares our best-performing DCT-based approach
to established methods, including cSPPSG and AHI [18]. In-
corporating the DCT layer at depth 5 or 6 outperforms these
baselines in terms of AUC, underscoring the advantage of
combining frequency-domain transformations with threshold-
based nonlinearities for improved hypertension-risk predic-
tion in OSA.

In conclusion, integrating the DCT layer at deeper trun-
cation depths within EfficientNet-B0 yields meaningful gains

Table 4: Comparison with State-of-the-Art Models

Model Accuracy (%) AUC (%)
cSPPSG [18] - 71
AHI [18] - 67
Ours 69.86 72.88

in AUC while maintaining high accuracy. This finding high-
lights the synergy between advanced CNN architectures and
frequency-domain transformations for predicting long-term
hypertension in OSA patients.

5. CONCLUSION

This study introduced a DCT-enhanced deep learning frame-
work to predict incident hypertension in obstructive sleep ap-
nea (OSA) patients using polysomnography data. By embed-
ding threshold-based nonlinearities in the DCT domain within
a truncated EfficientNet backbone, we preserved essential
negative-frequency information and effectively leveraged
multi-signal features. Our best-performing configuration
achieved 69.86% accuracy and a 72.88% AUC, surpassing
existing models such as cSPPSG and AHI, which achieved
71% and 67% AUC respectively. These results highlight the
potential of combining spectral-domain methods with CNNs
for hypertension prediction.

Limited data may affect generalizability. Future work will
focus on expanding data availability, and further improving
the model architecture. By addressing these areas, we aim
to enhance predictive performance and support earlier, more
precise interventions for OSA patients at risk of developing
hypertension.
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