Pursuit Regularity Index for Parkinson’s Disease
Detection via videonystagmography
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Abstract—We introduce a novel indicator for the automatic
detection of Parkinson’s disease, a neurodegenerative disorder
characterized by motor impairments, including abnormal eye
movements. This study, conducted in the context of videonys-
tagmography (VNG), investigates the Pursuit Regularity Index
(PRI), which quantifies the spectral sparsity of pupil motion
during target tracking. We assess the potential of PRI to improve
classification accuracy when combined with other VNG-derived
features. Using a proprietary dataset collected at Razi University
Hospital in Tunisia, our results demonstrate that integrating PRI
into machine learning models significantly enhances the accuracy
and reliability of PD detection.

Index Terms—Parkinson’s Disease, eye movement, videonys-
tagmography, feature extraction, classification.

I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder that lacks reliable biomarkers. Its diagnosis tradition-
ally relies on the clinical assessment of symptoms such as
tremor, rigidity, akinesia, and postural instability [1]. These
assessments are often complemented by additional tests, such
as brain imaging for differential diagnosis [2]. The neurode-
generative process in PD is often preceded by a prodromal
phase that can last several years before the onset of the first
motor symptoms. As a result, a diagnosis based solely on
clinical evaluation may be insufficient, particularly in the very
early stages of the disease, when motor signs are subtle or
absent, and non-motor symptoms may be nonspecific.

Currently, advances in Machine Learning (ML) techniques
are opening new perspectives in the diagnosis of neurological
disorders, including PD [3]. ML algorithms use various types
of data for PD diagnosis, including neuroimaging [4], hand
movement [5] and voice recordings [6]. Electroencephalogra-
phy (EEG) can identify specific brain wave alterations in pa-
tients with PD. In [7], the authors demonstrated that applying
signal processing techniques and ML algorithms to resting-
state EEG data can distinguish PD patients from healthy
individuals with 97.5% accuracy. Similarly, in [8], handwriting
features analyzed using neural networks enabled PD detection
with over 90% accuracy, highlighting its diagnostic potential.
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While biological signals are commonly used for PD diag-
nosis, eye movement (EM) analysis remains relatively under-
explored, despite its potential to provide reliable and non-
invasive indicators for PD detection. Indeed, studies have
shown that ocular alterations can be detected even before
clinical motor symptoms appear [9], making them promising
prodromal biomarkers for PD. A clinical study [10] conducted
on 30 untreated PD patients and 31 healthy controls (HC)
revealed several EM abnormalities in PD patients. These
included reduced convergence amplitudes and a decreased
blink rate compared to HC. PD has also been investigated
through the analysis of pro-saccades and anti-saccades in
EM tests [11], [12]. Pro-saccades require participants to shift
their gaze toward a peripheral stimulus, while anti- saccades
involve looking in the opposite direction. These tests can
reveal abnormalities in pupillary responses, offering valuable
insights into the neurological alterations associated with PD.

The integration of non-invasive eye tracking technology,
such as video eye tracker and videonystagmography (VNG),
has advanced the understanding of EM disorders, revealing
their connection to underlying neurophysiological mecha-
nisms [13]. Additionally, these technologies have facilitated
the application of advanced ML algorithms to recorded EM
data, significantly improving the accuracy of the diagno-
sis [14]. For instance, in [15], authors classified saccadic
EM collected via VNG from 100 subjects (PD and HC)
and achieved an accuracy of 84%. In another study [16],
researchers analyzed eye-tracking data from pro/anti-saccade
video recordings of 121 patients with various atypical PD
syndromes and 106 HC, obtaining an accuracy of 83%.
Additionally, [17] analyzed the raw waveforms of saccade time
series from 127 participants to distinguish PD from PSP and
HC, achieving an accuracy of 64%. Although these recent
findings confirm that automated approaches offer objective
quantification of oculomotor deficits, promising more reliable
and reproducible diagnostic tools, these methods often rely
on a limited number of participants at varying disease stages.
Additionally, the diversity of EM tasks used in studies affects
performance assessment, further complicating the interpreta-
tion of oculomotor dysfunctions in PD [18].

In this paper, we introduce the Pursuit Regularity Index
(PRI) as a novel feature for PD detection. It quantifies the
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Fig. 1: Eye movement acquisition protocol.

spectral sparsity of pupil motion while tracking a sinusoidally
varying target, offering a precise assessment of smooth pur-
suit. While smooth pursuit oculomotor disorders have been
studied, the use of sparsity measures such as PRI to quan-
tify these aspects remains unexplored. To investigate this,
we analyzed EM—including pro/anti-saccades and smooth
pursuit—recorded by VNG. Data collection took place at
Razi University Hospital in La Manouba, Tunisia, under the
supervision of neurologists, ensuring both reliability and clin-
ical relevance. For ML analysis, we tested multiple classifiers
and employed a robust cross-validation method to ensure an
unbiased evaluation.

The remainder of the paper is structured as follows: Section
I describes the database, feature extraction process, and an
overview of the proposed methods. Section III presents the
experimental findings, while Section IV discusses the main
results and provides perspectives for future work.

II. METHODOLOGY

A cross-sectional study was conducted at the Department of
Neurology, Clinical Investigation Centre Neurosciences and
Mental Health, Razi University Hospital, Tunisia, between
November 2023 and April 2024. The study population con-
sisted of 42 PD patients and 44 healthy controls (I). Inclusion
criteria for PD patients required a confirmed diagnosis of
PD. Exclusion criteria included the presence of cognitive
impairments that could interfere with oculomotor assessment,
as well as any conditions or treatments known to influence
oculomotor function (e.g., diabetes mellitus, psychotropic
medications [19]). All HC underwent a comprehensive neuro-
logical examination to exclude any neurological abnormalities
or vestibular disorders that might introduce artifacts into eye
movement recordings. Motor disability was assessed using
part III of the Unified PD Rating Scale (UPDRS III). All
participants provided informed consent in accordance with
the study protocol. All acquisitions were conducted with the
approval of the Razi Hospital Ethics Committee (approval
number: P2021-005).

A. Data acquisition and processing

1) Experimental protocol: Eye movements were recorded
and analyzed using a VNG system (Synapsys™, Goggles
Flex; VNS3X monocular camera; and Ulmer software), a non-
invasive and reliable method to assess oculomotor functions

HC pursuit signal
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Fig. 2: Example of a VNG pursuit signal from a Healthy Control
(HC) and a patient with Parkinson’s disease (PD).

based on stimulated eye movements (EM). This technique
measures key parameters from specific EM tasks—saccadic
and smooth pursuit in this study—such as latency, speed, and
precision, providing valuable insights into the neural circuits
involved in eye movement control.
Participants were asked to follow a white circular light stim-
ulus displayed on a black screen, with their eyes, without
making head movements, as illustrated in Fig. 1. They were
seated 75 cm from a 42-inch projection screen in a quiet,
dimly lit room. The camera was positioned on the right eye by
default, unless the left one was identified as more suitable for
recording. Each EM task lasted approximately 60 seconds and
was repeated twice. Prior to each eye examination, participants
received clear instructions and a practical demonstration to
ensure their understanding. Throughout the sessions, regular
verbal encouragement was provided to maintain their attention.
2) Oculomotor Assessments: Saccadic EM tasks are cat-
egorized into two types: reflexive and voluntary. Reflexive
saccades, also known as visually guided saccades, are rapid
eye movements in which participants must quickly shift their
gaze to a target stimulus as soon as it appears. In contrast,
voluntary saccades, or anti-saccades, require participants to
rapidly direct their gaze in the opposite direction of the stim-
ulus [20]. The anti-saccade task is commonly used to assess
voluntary eye movements and the ability to inhibit reflexive
responses. In addition, the smooth pursuit task involves a
slow, continuous, and voluntary tracking of a moving stimulus,
with the stimulus’s angular amplitude following a sinusoidal
trajectory. This task requires precise coordination between EM
and target motion. Oculomotor disorders are more pronounced
in voluntary saccades than in reflexive saccades during the
early stages of PD, manifesting as increased latency, reduced
precision, and impaired inhibition of reflexive saccades during
anti-saccadic tasks [21]. Additionally, PD patients exhibit
altered pursuit gain and impaired convergence ability [22].
These abnormalities represent potential biomarkers for disease

TABLE I: Clinical characteristics of participants.

HC PD
Number of subjects 44 42
Gender (female:male) 29:15 24:18
Mean age + SD (years) 56.6 £ 11.1 67.2 £+ 8.61
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progression and associated cognitive deficits [23].

EM were recorded for approximately one minute, with pro-
saccades and anti-saccades measured in the horizontal plane,
while pursuit movements were recorded in both horizontal and
vertical directions. Saccadic EM were assessed using Freyss
square signals with a pseudo-random period and an angular
amplitude of £20°, while pursuit was assessed at a frequency
of 0.3 Hz with an angular amplitude of +35°.

B. Feature extraction

The VNG system, equipped with Ulmer software, instantly
extracts the eye movement signal from the video recording
and displays it as a time series on the VNG command screen,
alongside the target signal (amplitude in degrees vs. time). An
example of a VNG tracking signal is shown in Fig. 2. The
time series from EM recordings are then processed by the
VNG software to compute a set of 16 oculomotor indicators,
including latency, velocity, precision, and gain (Table II).
These measures provide valuable insights for clinicians to
quantify oculomotor abnormalities associated with neurode-
generative diseases and aid in differentiating Parkinsonian
syndromes [24]. However, these VNG measures are only
displayed on the command screen and are not automatically
exported with the raw EM signals, limiting their direct integra-
tion in ML models. To overcome this limitation, we manually
exported the 16 metrics in order to integrate them into the ML
modeling process.

The use of ocular indicators in the automatic detection of PD
remains understudied and insufficiently explored. One major
challenge is the lack of a publicly available and standardized
methodology for calculating VNG-derived measures, making
their integration into automated classification approaches diffi-
cult. Moreover, existing studies have primarily focused on the
clinical analysis of VNG signals without fully exploiting their
quantitative potential. In this work, we propose computing a
novel measure directly from the raw VNG pursuit signals
to improve the accuracy and reliability of automatic PD
detection, when combined with VNG-provided metrics.

C. Pursuit Regularity Index (PRI)

We propose a quantitative indicator to assess the regularity
of eye movements during the pursuit task: the Pursuit Reg-
ularity Index (PRI). In healthy controls, pursuit movements

TABLE II: Description of VNG measures [20].

VNG Measure Definition

Latency (ms) Time delay between the onset of the stim-
ulus movement and the start of the eye

movement

Velocity (°/s) Computed from time series of gaze position

data by taking the 1% derivative

Precision (%) Ratio of EM amplitude (in°) to target am-

plitude

Gain Ratio of eye velocity to target velocity

VNG software

’ VNG measures ‘

’ Raw eye tracking signals ‘

PRI calculation
v

| Classification |

VNG measures VS VNG measures + PRI !
i Features preprocessing, Hyperparameters tuning, |
Nested cross-validation 1

Performance evaluation

Fig. 3: Proposed VNG-based classification flowchart.

are generally smooth and regular, resulting in a sinusoidally
varying signal along the time axis (see Fig. 2). In contrast,
PD pursuit movements exhibit irregularities and fluctuations,
reflecting impairments in oculomotor control. In the frequency
domain, this corresponds to a sparser spectrum for HC com-
pared to PD. The closer the ocular signal is to a sine wave, the
sparser its spectrum. The regularity of eye motion over time
can be quantified by its spectral sparsity, measured using the
Hoyer index [25], which is referred to here as the PRI, and is
defined as:

PRI N1
where || X||; and || X||2 are the L1 and L2 norms of the Fourier
transform X of the EM signal, respectively, with N the number
of frequency samples. A PRI close to 1 indicates a signal that
is sparse in the frequency domain, while a PRI near 0 suggests
a more spread spectrum, and hence a noise-like signal. The
HC pursuit signal, which corresponds to a slightly noisy sine
wave, will have a PRI close to 1, though slightly lower than
that of the target. In contrast, a PD signal, characterized by
greater variability, will have a lower PRI, tending towards 0.
This principle motivates the use of PRI as a new indicator
for detecting disturbances. However, this index captures only
the signal’s regularity and should be combined with other
VNG measures, such as speed or gain, to provide a more
comprehensive assessment.

D. Proposed classification framework

Fig. 3 illustrates the automatic eye tracking-based classifi-
cation implemented in this study. Both the target and subject
raw signals are exported from the VNG software. The PRI
is then calculated from these raw tracking signals for each
participant. Classification is subsequently determined based on
both the PRI and the VNG-provided metrics.

To build an unbiased model, nested k-fold cross-
validation [26] was employed to prevent potential overfitting.
Despite the limited dataset, only one of the two VNG mea-
surements recorded per task and per subject was selected
in order to ensure consistency and avoid redundancy in the
classification process [27]. Feature preprocessing was applied

1574



0.4 1

T T

HC PD
Group

Fig. 4: Comparison of PRI distribution for horizontal pursuit.

to the training set in each iteration of the outer fold cross-
validation. Normalization was performed using MinMaxS-
caler, with the minimum and maximum values of the features
computed solely from the training set, ensuring that the test
set did not influence the training process. These parameters
were then used to normalize both the training and test sets.
We trained several supervised ML models: k-Nearest Neighbor
(KNN), Decision Tree (DT), Support Vector Machine (SVM),
Random Forest (RF), and Gradient Boosting (GB). Classifiers’
performance was evaluated using standard metrics, such as
precision, recall, specificity, and F1-score.

ITI. RESULTS AND DISCUSSION
A. Ocular data analysis

To assess the normality of the data, we used the Shapiro-
Wilk test, which is suitable for small sample sizes [28]. The
results presented in Table III indicate that some characteristics,
such as pro-saccade velocity and right anti-saccade precision,
do not follow a normal distribution (p-value<0.05). Conse-
quently, we applied the Mann-Whitney test for these features,
while the t-test was used for features showing normality. The
results revealed that only two features—PRI of horizontal
pursuit and right anti-saccade precision—were statistically
significant, with p-values of 0.024 and 0.033, respectively,
suggesting potential differences between the studied groups.
The statistical significance of PRI of horizontal pursuit high-
lights its potential as an effective biomarker for distinguishing
PD from HC. In contrast, other ocular measures did not show
significant differences.

B. PRI descriptive analysis

Statistical analysis of the PRI in horizontal eye tracking
reveals a significant difference between the two groups, with
a p-value of 0.016. This analysis is further supported by
a descriptive approach using boxplots, as shown in Fig. 4.
Comparing the PRI distributions in horizontal pursuit, we
observe that the PD group exhibits a higher median PRI than
the HC group, along with greater dispersion. This suggests

increased irregularity in their horizontal pursuit movements,
reflecting impairment in the control of smooth eye tracking.
These findings align with previous studies that link PD to
oculomotor deficits, which affect gaze stability [22].

C. Classification results

As shown in Table IV, all the considered ML algorithms
perform poorly when relying solely on VNG-provided metrics.
However, integrating PRI data as an additional PD-related
EM indicator significantly enhances the performance of all
classifiers, leading to notable improvements in both accuracy
and Fl-score. Among the tested models, GB achieves the
highest accuracy after PRI integration (72.09%), followed
closely by KNN at 70.84%. As for the Fl-score, it reflects
the trade-off between precision and recall and is used to
assess the models’ ability to correctly detect both classes,
particularly in a potentially unbalanced dataset. Employing
only VNG data, the Fl-scores remain modest, ranging from
26.29% (SVM) to 54.37% (KNN), suggesting the models’
difficulty in generalizing their results. However, incorporating
the PRI index results in a significant improvement, with F1-
scores ranging from 55.99% (DT) to 64.55% (GB). This
improvement indicates that PRI measures provide comple-
mentary discriminative information to the VNG data, thus
improving the quality of predictions. These results support
previous statistical interpretations and demonstrate that PRI is
a valuable complement to VNG-provided metrics. Moreover,
they confirm that PRI is a reliable indicator of EM control
impairments during pursuit tasks.

It is important to note that our primary objective was not
to achieve the highest possible classification performance but
rather to highlight the added value of PRI as a novel metric

TABLE III: Statistical significance of different EM indicators.

Feature VNG task Normality p-value
PRI H. Pursuit Normal 0.024
PRI V. Pursuit Normal 0.102
Right gain H. Pursuit Normal 0.342
Left gain H. Pursuit Normal 0.368
Upper gain V. Pursuit Normal 0.51
Lower gain V. Pursuit Normal 0.847
Right latency Saccade Normal 0.372
Left latency Saccade Normal 0.53
Right speed Saccade Non-Normal  0.633
Left speed Saccade Non-Normal  0.29
Right precision Saccade Non-Normal  0.458
Left precision Saccade Non-Normal ~ 0.872
Right latency Antisaccade ~ Normal 0.715
Left latency Antisaccade  Normal 0.309
Right speed Antisaccade  Non-Normal  0.128
Left speed Antisaccade  Non-Normal  0.364
Right precision  Antisaccade  Non-Normal  0.033
Left precision Antisaccade  Non-Normal  0.687
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TABLE IV: Comparison of classifiers performance (in %)

. VNG data VNG data + PRI
Classifier
Accuracy F1-score ‘ Accuracy Fl-score

KNN 56.99 + 13.90 54.37 70.84 + 4.51 58.00
DT 48.16 + 4.67 43.76 65.76 + 4.62 55.99
SVM 42.06 £ 7.64 26.29 63.63 + 10.32 60.43
RF 53.31 &£ 11.57 49.76 67.24 £+ 547 62.43
GB 54.34 + 6.13 53.37 72.09 + 6.24 64.55

for the automatic detection of PD. Further analysis of the
VNG-provided metrics revealed that some features exhibit
strong correlations, particularly among pro-saccade measures,
whereas anti-saccade metrics show relatively low correlation.
These findings underline the need for further investigation into
feature selection, to refine the set of indicators and retain only
the most relevant and discriminative features for PD detection.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this study, we introduced the Pursuit Regularity Index
(PRI) as a novel indicator for the automatic detection of PD.
Using a newly collected database of biomedical oculomotor
signals recorded via videonystagmography at the Department
of Neurology, Clinical Investigation Centre Neurosciences and
Mental Health, Razi University Hospital, Tunisia, we demon-
strated the added value of PRI in PD classification. Statistical
analyses confirmed that PRI provides relevant information
that enriches standard VNG-provided measures, leading to
a significant improvement in classifier performance. While
the obtained classification results do not surpass state-of-the-
art approaches, our primary objective was to highlight PRI’s
potential as a complementary measure in PD eye movement
analysis. These findings validate PRI as a reliable indicator of
oculomotor regularity and fluidity, offering a new perspective
for assessing PD-related deficits.

However, our study has several limitations. First, the rel-
atively small size of the dataset used for analysis may limit
the generalizability of the results, highlighting the need for
a larger and more diverse sample in future studies. Second,
although classifier performance improved with the inclusion
of PRI, the results remain moderate, suggesting that additional
features could be explored to further enhance the model’s
performance. A more in-depth statistical analysis of VNG-
provided eye movement features could also contribute to this
optimization.
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