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Abstract—Parkinson’s disease is characterized by motor dis-
orders caused by the progressive death of neurons producing
dopamine. DaTscan imaging, namely Single-Photon Emission
Computed Tomography (SPECT) with ioflupane (123I), allows
to quantify this loss of neurodopaminergic neurons, more par-
ticularly observed in the striatum. In this article, a two-step
classification method is proposed to detect Parkinson’s disease
on DaTscan images focusing on this key structure. A graph
is first created from the segmentation of the striatum, relying
on the creation of the Max-Tree of the DaTscan image and a
prior segmentation. Then, a Random Forest algorithm is applied
to classify the nodes of the striatal graph, computing features
extracted locally or related to subject’s properties. Finally, the
classification is made on the whole graph using Deep Learning,
and adding the Random Forest predictions as new features. The
combination of these two approaches offers promising results on
the Parkinson’s Progression Markers Initiative (PPMI) database,
achieving an average balanced accuracy of 91.1% using a nested
cross-validation strategy to increase the robustness of the results.

Index Terms—Parkinson’s disease, DaTscan, Graph Deep
Learning, Random Forest, Max-Tree

I. INTRODUCTION

Parkinson’s is the second most common neurodegenerative
disease in the world [1]. It results in the progressive death of
neurons producing dopamine, a hormone involved in the con-
trol of motor movements. The symptoms, including tremors,
muscular rigidity and slowness of movement, occur when 50 to
70% of these neurons are dead. Thus, the disease, and more
especially at an early stage or when symptoms appear non-
simultaneously or at different intensity levels, may be difficult
to diagnose.

Single-Photon Emission Computed Tomography (SPECT),
a nuclear imaging technique, can be used to confirm di-
agnosis by quantifying dopamine level in the brain when
using ioflupane (123I) as a radiotracer [2]. The resulting
images, also called DaTscans, showing a striatum with an
unusual shape and lower intensity values (see Fig. 1), can be
suggestive of Parkinson’s disease, as the radiotracer uptake is
then expected to be reduced in this region because of the loss
of dopaminergic neurons.

Hence, numerous classification methods for Parkinson’s
disease focus on the striatum, for example restricting the
DaTscan images to one or multiple slices [3]–[5] or regions [6]
encompassing this key structure. Features extracted from the
striatum can also feed the model [7]. Moreover, regions outside

Fig. 1: DaTscan images of a healthy subject (left) and a patient
with Parkinson’s disease (right). The striatum is indicated by
red arrows.

the striatum and not affected by the disease can be used for in-
tensity normalization [4]. If most of these methods apply Deep
Learning models, and more especially Convolutional Neural
Network (CNN) [8], on the image focused on the striatum, [6]
further refines the search domain by masking regions poten-
tially outside the striatum using isosurfaces associated with
different thresholds. This method also offers promising and
robust performances using a nested cross-validation strategy.
Thus, focusing on the region really delimited by the striatum
on DaTscan images can increase the performances to detect
Parkinson’s disease.

In this context, this article proposes an original Graph Deep
Learning-based approach to diagnose Parkinson’s disease on
DaTscan images. First, a subject specific segmentation of the
striatum is automatically performed relying on an atlas of
the brain and Max-Trees. Then, a graph is created from this
segmentation, each node being a connected component of the
binary segmentation of the striatum on each axial slice. Finally,
the classification is divided in two steps: a single node clas-
sification using Random Forest, followed by the whole graph
classification using Deep Learning. More precisely, the Graph
Deep Learning model uses the node predictions provided by
the Random Forest algorithm, and both classification tasks
benefit from subject and striatal properties such as shape,
intensity or symmetry. The associated features, as well as the
whole detailed procedure, are further described.
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II. MATERIAL AND METHOD

A. Dataset

The dataset used in this article is made of DaTscan images
from 1012 subjects, 810 patients with Parkinson’s disease
and 202 healthy subjects, downloaded in the Parkinson’s
Progression Markers Initiative (PPMI) database during october
2024. More particularly, the collected images include data
from 525 male patients and 88 male control subjects. The
minimum, maximum and median age, namely 30, 85 and 64
years, are similar for the chosen patients and control subjects.
The images were downloaded from subjects who did not have
any pathogenic genetic variant, diagnostic change over the
study or withdrawal from the study. Then, for each selected
subject, the first available reconstructed and pre-processed
DaTscan image was downloaded. The pre-processing consisted
in aligning the data into the MNI space, leading to images of
dimension 91x109x91 voxels, with voxel size 2x2x2mm3.

B. Generation of an atlas of the brain

Because the available DaTscan images were in the MNI
space, an atlas of the brain was used to obtain a prior segmen-
tation of relevant structures to detect Parkinson’s disease such
as the striatum. However, brain atlases are usually available on
Magnetic Resonance (MR) images. To that end, AssemblyNet
[9], [10], a Deep Learning-based brain parcellation algorithm
accessible from the volBrain platform [11], was applied to
the 2mm isotropic T1-weighted MNI template image of FSL
[12]. It provided a prior segmentation of 132 brain structures,
associated with 264 labels making the distinction between
right and left brain hemispheres.

Among the segmented structures, the putamen, pallidum and
caudate composing the striatum were available. The union of
these regions was used to obtain a prior segmentation of the
striatum in each brain hemisphere.

Moreover, the lentiform nucleus, composed of the putamen
and pallidum, and the neostriatum, made of the caudate and
putamen, could also be potentially relevant for the analysis. In
this article, the augmented atlas refers to 135 brain structures:
the 132 regions of the previously generated atlas, the striatum,
neostriatum and lentiform nucleus.

Finally, a prior binary mask of the brain was generated,
excluding regions associated with the background of the atlas.
After filling the holes of the binary image of the brain, slice
by slice, this mask was applied to each DaTscan image.

C. Creation of the graph of the striatum

The first step of the method requires the 3D segmentation of
the striatum, appearing as a well delimited structure of bright
intensity on DaTscan images, more especially for healthy sub-
jects (see Fig. 1). Therefore the Max-Tree [13], a hierarchical
structure highlighting regions with intensity values greater than
their surrounding in an image, notably used for segmentation
[14], is suitable to detect the striatum. Indeed, the Max-Tree is
a graph, each of its nodes being associated with a connected
component of the binary image obtained after thresholding
the input image to one of its intensity values. In this work,

3D segmentation of the striatum Striatal graph

Striatal axial slices

Fig. 2: Illustration of the creation of the graph of the striatum
on a healthy subject.

the striatum is expected to be associated with two nodes of
the Max-Tree, one in each brain hemisphere.

The Max-Tree of each DaTscan image is first created,
applying all possible thresholds to the associated requantified
image (see section III-A). Then, the nodes having the highest
overlap with the right and left prior striatum segmentations
are selected, this overlap being measured with the Dice’s
coefficient.

Finally, the striatal graph is created from the axial slices of
the 3D segmentation of the striatum, therefore composed of
the best two nodes of the Max-Tree of the associated DaTscan
image. More precisely, each node of the graph of the striatum
represents an axial slice of the right or left segmented striatal
region. Edges are then created between nodes associated with
striatal regions on adjacent axial slices belonging to the same
hemisphere. Two nodes associated with striatal regions on a
same axial slice are also linked by an edge. Thus, the resulting
graph, as illustrated in Fig. 2, is specific to each subject, and
can be used for Parkinson’s disease classification associating
relevant features to each node.

D. Classification of striatal nodes using Random Forest

Once the striatum’s tree has been created, its nodes are first
classified individually using machine learning. To that end, an
unique label is assigned to all nodes from a same subject, i.e.
1 for patients with Parkinson’s disease, 0 otherwise. The label
of each node is then predicted based on features falling into
six categories, described above.

a) Clinical data: the chosen clinical features are the sex
and age. Thus, the associated feature values are the same for
all the nodes of a same subject.

b) Shape: geometric properties are measured for each
node. They include area (in mm2 and as the ratio with the
area of the brain on the same slice), sphericity (computed as
the overlap between the node and its best fitted circle) and
the overlap with the node on the same hemisphere on the
previous slice. Geometric information from the augmented
atlas is also considered, computing the ratio with the area
of each augmented atlas region on the same slice, and the
overlap with each augmented atlas region, on the same slice
or restricted to the right or left hemisphere.
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c) Symmetry: these features cover both shape and in-
tensity information. For each slice, the symmetric image is
computed as the vertically flipped image. For each node,
the symmetric node is computed as the vertically flipped
binary image of the node on the opposite hemisphere on the
same slice. Symmetry information is extracted computing the
overlap between the node and its symmetric node, and the
ratio between the mean node intensity on the original and
symmetric image.

d) Localization: spatial information is computed on each
node and its associated slice. The distance between the node’s
slice and a reference slice, namely the first or median striatal
slice, is computed in mm. The augmented atlas is also used to
determine whether a node belongs to a specific region, either
on the whole slice or restricted to the right or left hemisphere.

e) Intensity: these features are based on the ratio between
the mean intensity value of the node and the intensity value
of a reference region. Thus, the mean and maximum intensity
values of the brain, computed on the whole volume or re-
stricted to the same slice as the node, are used as a reference.
The mean intensity value of the regions outside the segmented
striatum (on the whole volume or restricted to the same slice
as the node) and the area surrounding the node on the same
slice are also used. Augmented atlas-based features consider
as a reference the mean intensity value of each augmented
atlas region, on the whole volume or restricted to the same
slice as the node.

f) Tree: these features embed properties computed on the
whole graph, namely the whole striatal volume measured in
mm3 and the ratio between the number of nodes and slices.

Thus, the chosen features are unitless or computed in
mm(2). Besides, the overlap between regions is measured
using the Dice’s coefficient. Finally, the 717 features assigned
to each node feed a classifier. More precisely, Random For-
est [15], an ensemble method relying on the prediction from
several decision trees, is applied to assess whether the subject
associated to each input node has Parkinson’s disease. This
algorithm offers robust results, controls over-fitting, and easily
provides information on the importance of each feature to
guide the decision. The average of the probabilities predicted
by the Random Forest trees is then considered to classify the
whole striatal graph in a Deep Learning-based approach.

E. Classification of striatal graphs using Deep Learning

After applying the Random Forest classifier on each node
of the striatal graph, the whole graph is classified using Deep
Learning. Supposing the Random Forest classifier is efficient,
and to reduce the computation time during training, only
important features according to this classifier are used to train
the Deep Learning model. Practically, only features with a
non-zero Gini importance are selected for the Deep Learning
step.

Moreover, the average probability of a node of being asso-
ciated with Parkinson’s disease, as predicted by the Random
Forest trees, is used as an additional feature. Because these
predictions are made on nodes, without any consideration of

their surrounding, filtering techniques are also applied on the
graph of the average predicted probabilities. More especially,
maximum, minimum (namely dilation and erosion [16]), mean
and median graph filters are applied, considering only adjacent
nodes as neighbourhood.

In short, for the Deep Learning step, the nodes of the striatal
graph are associated with five features derived from the Ran-
dom Forest node’s prediction, and features defined in section
II-D considered as important by the Random Forest classifier.
Finally, a Graph Convolutional Neural Network (GCN) [17]
is applied to the resulted striatal graph to assess whether
the associated subject has Parkinson’s disease. The chosen
architecture, among other parameter settings, is described in
the next section.

III. EXPERIMENTAL RESULTS

A. Experimental setting

The method was implemented in Python, using Scikit-Learn
[18] for Random Forest and PyTorch Geometric [19] for Graph
Deep Learning. The experimental setting is describe above.

a) Data distribution: to assess the robustness of the
proposed method, 10-fold cross-validation was performed:
the subjects were split into ten equal sized folds, each one
following the dataset proportion of patients and healthy control
subjects. Thus, all the nodes or graphs of a same subject
were attributed to the same fold. Moreover, nested cross-
validation [20] was also considered to optimize the hyperpa-
rameters of the involved models. However, to avoid any bias,
the process was adapted to rely on different subjects during
the training of the node and graph classification models. To
that end, at each of the ten training and testing phases of
the cross-validation, one fold was used for testing, the first
four remaining folds for training the node classifier and the
five remaining folds for training the graph classifier. Balanced
accuracy was chosen for each cross-validated metric.

b) Graph creation: the Max-Tree was performed on the
brain-masked DaTscan images linearly requantified to 64 gray
levels. The 6-connectivity was used to label the binary images
obtained at each threshold of the requantified image.

c) Node classification: the hyperparameters of the Ran-
dom Forest model chosen to be optimized using Grid Search
during a 4-fold cross-validation were the number of trees, the
maximum depth of a tree, and the class weight strategy.

d) Graph classification: the chosen architecture was
made of two alternations of GCN and Rectified Unit (ReLU)
layers, followed by a GCN layer. Each GCN layer had 64
hidden channels. A global mean average pooling layer was
then applied, followed by a dropout of 50%, and a linear layer.
A sigmoid function was finally applied on the two outputs
of the network, one for each class. Each model was trained
with a batch size of 32 on 100 epochs at the most and using
Adam with a learning rate of 0.01 to optimize the binary cross-
entropy loss. Moreover, each training was stopped at the epoch
leading to the highest average balanced accuracy when fitting
the model to the validation set, each validation set being one
of the five folds used for graph classification.
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TABLE I: Performances of the Random Forest algorithm
(mean over the 10 test folds)

Applied Node Consistent Consistent graph
Graph classification graphs classification
Filter TNR TPR HC PD TNR TPR
None 0.812 0.907 61.9% 84.0% 0.861 0.972

Erosion 0.861 0.871 79.7% 86% 0.893 0.948
Dilation 0.757 0.937 64.3% 90.6% 0.830 0.973

Mean 0.821 0.908 71.8% 88.5% 0.861 0.961
Median 0.819 0.908 72.3% 87.7% 0.861 0.963

The Deep Learning process was divided in two steps.
First, forward-Sequential Feature Selection (SFS) [21] was
performed with 5-fold cross-validation. This greedy algorithm
starts by selecting the best feature, according to the chosen
cross-validated metric, training the model with only one fea-
ture. Then, the best new feature, training the model with two
different features, including the first selected one, is added
to the selection. Thus, forward-SFS adds features one-by-
one until reaching the required number of features. In this
article, to reduce computation time, the algorithm ends when
the cross-validated metric stops increasing.

Once the features were selected, 5 classifiers were used in an
ensemble approach to obtain a robust graph classification. For
each classifier, four folds were used for training, and one fold -
different for each classifier - for choosing the best epoch. The
5 trained models were then fitted to the graphs in the test fold.
One common strategy to make a labeling decision is majority
voting: the class predominantly predicted by the classifiers is
assigned to the associated test sample. Other strategies rely on
the soft rather than the hard labels. For example, the sum [22]
or mean over the classifiers of each predicted class output is
computed for each test sample, hence associated with the class
maximizing that score. In this article, additional strategies are
explored, selecting for each test graph the classifier giving
the minimal, maximal or median Parkinson’s class output
when fitted, and assigning to the related test sample the class
predicted by the selected classifier.

B. Results

As shown in I, the performances of the Random Forest
(RF) algorithm were better when the nodes to classify were
associated with Parkinson’s Disease (PD), covering 77.9%
of the 25942 nodes on the whole dataset. Moreover, results
related to real cases of PD, respectively Healthy Control
(HC), were improved after applying a dilation, respectively
an erosion, on the graph of RF predicted probabilities. As
shown by the True Positive Rate (TPR) and True Negative
Rate (TNR) values, the RF model generally provided a proper
node prediction. Besides, the node manual labelling relied on
the supposed uniformity of the node labels belonging to a
same striatal graph. This consistency was observed in many
RF predictions, with in average, up to 90.6% of PD graphs in
the test folds having an unique predicted node label, against
79.7% for HC graphs. The classification performances on these
consistent graphs turned out to be yet very encouraging. These

TABLE II: Properties of features preferentially chosen by the
Sequential Feature Selection (mean over the 10 Deep Learning
trainings)

Feature Filter/norm SFS Selection SFS-1 SFS RF
type rank rate CV BA rank
RF Dilation 1.0 20.0% 0.882 0.971 -
RF Mean 1.0 10.0% 0.906 0.983 -
RF Median 1.0 10.0% 0.905 0.968 -
RF Erosion 1.0 20.0% 0.873 0.956 -
RF - 1.0 40.0% 0.884 0.946 -

Intensity Lateral 2.0 20.0% 0.538 0.971 58.0
ventricule

Distance Median 2.25 40.0% 0.5 0.965 83.5
slice

Age - 2.4 50.0% 0.5 0.943 94.0
Distance Top 3.0 10.0% 0.5 0.967 151

slice
Intensity Lateral 3.0 10.0% 0.603 0.976 70.0

Orbital
gyrus

Area Caudate 3.0 10.0% 0.5 0.935 94.0
Intensity Medial 3.0 10.0% 0.593 0.968 133

frontal
cortex

Area Putamen 3.17 60.0% 0.541 0.962 107
Intensity Anterior 3.5 20.0% 0.514 0.961 144

orbital
gyrus

RF predicted probabilities, with or without filtering, turned
out to be the most relevant features for the Deep Learning
graph classification, as reported in II. Thus, they were always
selected first by the SFS method, as they were associated with
the highest cross-validation (CV) metric, namely balanced
accuracy (BA), when training the model with only one feature
(SFS-1). However, adding features related to nodes or subject
significantly increased the training CV metric. Among these
additional features, the ratio between the areas of the node and
the putamen segmented in the atlas, the age and the distance
from the median slice were chosen most frequently. Finally,
SFS showed good training performances while keeping only
in average 7 features among the 212 features highlighted by
the RF algorithm. Moreover, SFS offered a complementary
selection, as it did not keep the most important features
according to the RF algorithm. More particularly, the whole
striatal volume, ranked in average as the most important
feature by the RF method, was never selected in the Deep
Learning step.

Once the features were selected using SFS, the choice
of an ensemble approach between the 5 graph classifiers
was decisive, as reported in III. While majority voting gave
the highest accuracy (ACC) averaged over the test sets, the
highest BA was obtained applying minimum voting, and so,
associating subjects with healthy controls in absence of con-
sensus between the classifiers. Although leading to potential
under-diagnosis, this strategy turned out to give the most
reliable Parkinson’s disease prediction, as measured by the
positive predictive values (PPV). Finally, the performances
were noticeably higher in case of full consensus between the
classifiers, occurring in average for 91% of the test subjects.
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TABLE III: Performances of the Deep Learning graph clas-
sifiers according to the ensemble strategy (mean over the 10
test runs)

Decision rule BA TPR TNR ACC PPV
Majority voting 0.908 0.946 0.871 0.931 0.968

Mean voting 0.905 0.944 0.866 0.929 0.966
Minimum voting 0.911 0.891 0.93 0.899 0.981
Maximum voting 0.865 0.964 0.767 0.925 0.944

Median voting 0.884 0.957 0.811 0.928 0.953
Consensus 0.94 0.962 0.918 0.954 0.981

IV. CONCLUSION

In this article, the proposed method benefited from the
complementarity of features computed at different scales. The
Random Forest algorithm classified nodes associated with
axial slices of the striatum, embedding both local and subject
information, such as clinical data and anatomic pattern. It
provided relevant features, further used in the Deep learning
classification of the striatal graph in an ensemble approach.
Besides, the choice of a voting strategy between the involved
classifiers turned out to be crucial, and should be further
explored. Future improvements will also include the segmen-
tation of the striatum, actually based on an atlas, that will
be done using Deep Learning on the Max-Tree of DaTscan
images. Finally, this approach will be compared with a Deep
learning classification directly made on the Max-Tree of these
DaTscan images.
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