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ABSTRACT

A novel deep learning framework is proposed for au-
tomated staging of spheno-occipital synchondrosis (SOS)
fusion, a critical diagnostic indicator in orthodontics and
forensic anthropology. Clinicians rely on precise anatom-
ical region defined by landmarks to determine SOS fusion
stages. To emulate this diagnostic approach computation-
ally, an object detection model (YOLOv11) was first trained
to accurately localize and crop regions of interest (ROI)
based on clinician-annotated anatomical landmarks. Utiliz-
ing these cropped regions, a specialized classification model
was developed capable of accurately predicting the SOS fu-
sion stages. To leverage both the localized expertise of this
classifier and the global context provided by full medical im-
ages, knowledge distillation was applied, transferring special-
ized diagnostic knowledge from the cropped-region classifier
(teacher model) to a holistic image classifier (student model).
Our approach includes a regularization term that encourages
alignment between the student’s Grad-CAM activation maps
and the bounding boxes provided by the teacher model, thus
enhancing model interpretability and ensuring consistent di-
agnostic focus. Comprehensive evaluations demonstrate that
our knowledge distillation-driven framework significantly
outperforms conventional methods, providing an efficient
and robust solution for automated SOS fusion staging.

1. INTRODUCTION

Accurately determining skeletal maturation is essential in
both orthodontics and forensic anthropology. The SOS, a
cartilaginous joint located in the cranial base, is the last
synchondrosis to fuse and plays a pivotal role in postnatal
craniofacial development [1]. Its fusion status is a crucial di-
agnostic indicator, facilitating orthodontic treatment planning
[2, 3], predicting pubertal growth spurts [4], and estimating
chronological age in forensic investigations [5]. Fig.1 illus-
trates the orientation and segmentation process, highlighting
the areas where doctors focus to determine the fusion stage.

Fig. 1: Skull oriented in three planes (a). Occipital and sphe-
noid bones cropped (b). SOS rotated and segmented (c).

Despite its clinical significance, manual assessment of
SOS fusion is frequently inconsistent due to variations in
staging methodologies and imaging modalities. The cervical
vertebrae maturation (CVM) method, commonly used for
skeletal age estimation, is not universally applicable, particu-
larly in situations where the cervical vertebrae fall outside the
imaging field [6, 7]. Consequently, SOS fusion assessment
emerges as a valuable alternative marker for skeletal maturity.
Nonetheless, existing studies demonstrate significant variabil-
ity in SOS classification schemes, employing anywhere from
three to six stages of fusion [8, 9, 10]. Moreover, differences
in imaging techniques—including histological sections, two-
dimensional radiography, computed tomography (CT), and
cone-beam computed tomography (CBCT)—exacerbate in-
consistencies in clinical interpretations [11, 12].

To address these challenges, our work proposes a novel
automated framework guided by expert anatomical annota-
tions. Our approach integrates landmark-guided object detec-
tion with knowledge distillation. Specifically, an object detec-
tion model (YOLOv11) is first employed, precisely guided by
expert annotations, to accurately localize critical anatomical
landmarks relevant to SOS fusion assessment. Subsequently,
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a specialized classification network is trained using these lo-
calized regions to determine the fusion stages.

This classification model, trained exclusively on expert-
guided regions, serves as a teacher model within our knowl-
edge distillation framework. The expert-driven diagnostic
knowledge is then transferred to a student model designed to
operate on the entire SOS image independently, eliminating
the need for explicit landmark annotations at inference time.
This student model effectively learns to identify clinically
significant structures implicitly.

Our main contributions are summarized as follows.
(i) Our work introduces a framework designed specifically

to automate and accurately classify the stages of SOS fusion,
effectively addressing current inconsistencies in manual as-
sessment methodologies.

(ii) Our work uses an innovative knowledge distillation
strategy, guided by expert anatomical annotations, enhancing
both accuracy and interpretability by implicitly embedding
expert-level diagnostic insights into the holistic image clas-
sifier model.

(iii) Our work conducts extensive experiments to rigor-
ously evaluate and compare state-of-the-art image classifica-
tion models with our proposed training approach. The re-
sults validate the effectiveness of our knowledge distillation
framework, demonstrating improvements in diagnostic accu-
racy, and interpretability.

2. METHODOLOGY

This section illustrates our extended proposed deep learning
framework for automated SOS fusion staging [13], incorpo-
rating expert-guided annotations, knowledge distillation, and
gradient-based attention. An overview of the overall approach
is first presented, followed by a detailed description of the
dataset and preprocessing pipeline, and finally, an explana-
tion of our knowledge distillation strategy.

The primary goal of our framework is to accurately clas-
sify the stage of SOS fusion using deep neural networks.
In clinical practice, SOS stage determination relies on local
anatomical indicators, which motivates our use of expert-
guided annotations during training. Our approach leverages
a teacher-student paradigm: (i) a teacher model is trained on
expertly cropped regions, capturing highly localized features
relevant to SOS fusion, and (ii) a student model learns to
classify the entire uncropped SOS image by distilling knowl-
edge from the teacher. Furthermore, a regularization term
is incorporated into our training strategy to explicitly align
the student’s attention maps, generated via Grad-CAM[14],
with the expert-annotated landmark regions. This alignment
ensures that the holistic classifier consistently focuses on di-
agnostically relevant areas, thereby enhancing interpretabil-
ity, reliability, and overall diagnostic performance. The final
framework yields a holistic classifier that requires no explicit
landmark cropping at inference, yet benefits from localized

diagnostic cues.

2.1. Dataset and Preprocessing for SOS Fusion Staging

This retrospective study utilized anonymized cone-beam
computed tomography (CBCT) scans from 723 patients (260
males, 370 females, 93 unspecified), aged 7–68 years, in ac-
cordance with institutional ethical standards at the University
of Illinois Chicago’s Office for the Protection of Research
Subjects (OPRS). Each SOS was categorized into five stages
according to the classification system proposed by Bassed
et al. [15], ranging from entirely open (Stage 1) to com-
pletely fused (Stage 5). This scheme was selected because its
methodology most closely parallels ours, particularly in its
use of three-dimensional acquisition. Three trained evalua-
tors independently assigned the fusion stages, achieving high
inter-rater reliability (Cronbach’s alpha = 0.945).

All CBCT images were imported into Dolphin Imaging
software and standardized in the axial, coronal, and sagittal
planes. From each scan, the midsagittal slice was extracted,
aligned, and cropped to a 2×1 aspect ratio centered on the
SOS region. The final dataset comprised 158 scans at Stage 1,
88 at Stage 2, 92 at Stage 3, 124 at Stage 4, and 252 at Stage 5.

2.2. Knowledge Distillation Framework

To leverage localized anatomical insights for whole-image
classification, a knowledge distillation framework was pro-
posed that employs a teacher-student paradigm. The teacher
model is trained on expertly cropped SOS regions identified
via YOLOv11, producing logits zteacher localized to the syn-
chondrosis. The student model, in contrast, takes as input the
uncropped images and outputs logits zstudent. Their training
was formalized with the following combined loss:

Ltotal = αLreg + β Ldist + θLcls, (1)

where each term is described below.
Distillation Loss (Ldist): To transfer knowledge from

teacher to student, their output logits were aligned through
the Kullback–Leibler (KL) divergence [16, 17]:

Ldist ==

K∑
k=1

zteacher log
(

zteacher
zstudent

)
, (2)

with zteacher and zstudent denoting the teacher and student’s
softened probability distributions, respectively. By minimiz-
ing Ldist, the student acquires the teacher’s localized diagnos-
tic representations.

Classification Loss (Lcls): The standard cross-entropy loss
was incorporated to drive the primary classification objective:

Lcls = −
K∑

k=1

yk log
(
ŷk
)
, (3)
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where yk is the ground-truth label distribution and ŷk is the
predicted probability of class k.

A Regularization Term (Lreg) was also used to the above
cost function. An explicit alignment between the student’s
gradient-based activation (Grad-CAM) and expert-defined
landmark masks was imposed to guide the network’s atten-
tion toward clinically relevant regions:

Lreg =
1

N

N∑
i=1

(
Âi −Mi

)2

, (4)

where Âi is the Grad-CAM map generated by the student for
the i-th sample, and Mi is the corresponding expert-annotated
region. This term ensures that even when learning from en-
tire images, the student model concentrates on key anatomical
structures.

Hyperparameter Tuning: Coefficients α, β, and θ in
Eq. (1) are empirically tuned to balance the influence of each
term. The following was set to achieve optimal convergence
in practice: α = 1× 10−2, β = 0.8, and θ = 0.2.

2.3. Student and Teacher Classification Backbone

A ConvNeXt base architecture was adopted [18] as the core
feature extractor, leveraging its modernized convolutional
design for efficient representation learning. To enhance the
model’s capacity for spatial awareness, a self-attention block
at the final layer was inserted. Convolutional stages of Con-
vNeXt capture hierarchical features and global context, while
the self-attention mechanism selectively reweights spatial re-
gions to emphasize critical anatomical landmarks related to
SOS fusion. Following attention-based feature aggregation,
a fully connected layer outputs the final classification, and
the new model is referred to as ConvNeXt+. This simple
setup integrates seamlessly with our knowledge distillation
framework, enabling both the teacher model (trained on
expertly cropped regions) and the student model (operat-
ing on uncropped images) to benefit from discriminative,
attention-driven feature representations. The cropped regions
used to train the teacher model are automatically extracted
using a YOLO object detector trained on expert-annotated
landmarks, enabling consistent and efficient ROI generation
without manual cropping.

3. RESULTS AND ANALYSIS

This section presents a detailed evaluation of our classifica-
tion models on the SOS dataset, comparing various architec-
tures and assessing the impact of our knowledge distillation
framework.

3.1. Object Detection Accuracy

The object detection capabilities of YOLOv11 was assessed,
which guides the model’s spatial attention during training.

Fig. 2: A framework for training the student model using dis-
tillation loss and a regularization term.

YOLOv11 achieves an mAP@0.5 of 72.8%, indicating ro-
bust detection performance across a range of anatomical land-
marks relevant to SOS fusion. This strong detection perfor-
mance lays the foundation for accurately localizing the re-
gions of interest used in our subsequent knowledge distilla-
tion framework. The teacher model was tested on the cropped
region of interest from YOLOv11, achieving an accuracy of
82.49%, precision of 82.63%, recall of 82.50%, and an F1
score of 82.34%.

Table 2 summarizes the comparative performance of sev-
eral architectures evaluated on the SOS dataset, and the most
adopted architecture in medical imaging was selected for use.
The following are key observations.

EfficientNet-B0 demonstrates a modest performance of
70.58% accuracy, indicating the challenges of represent-
ing the subtle cranial-base features in a lightweight model.
ResNet34 and ResNet50 offer moderate gains of approxi-
mately 4–5% over EfficientNet-B0, suggesting that deeper
residual networks capture more nuanced textures but show
diminishing returns beyond a certain depth. ConvNeXt
achieves a substantial jump to 78.99% accuracy, owing to
its modernized convolutional design that balances global
structure and fine details. Finally, our proposed ConvNeXt+
integrates targeted attention mechanisms into the ConvNeXt
backbone, delivering an accuracy of 79.97% and an F1 score
of 78.87%, highlighting the benefits of enhancing landmark
localization without sacrificing global context.

ConvNeXt+ strikes the best trade-off between model ca-
pacity and attention-based feature refinement.

3.2. Impact of Knowledge Distillation

Table 1 details the quantitative benefits of applying our
knowledge distillation (KD) approach to the ConvNeXt+
architecture:

i) Accuracy Gain: Incorporating KD boosts accuracy
from 79.97% to 83.05%, demonstrating that information from
the teacher model (trained on localized, expertly cropped SOS
regions) effectively guides the student model to focus on rel-
evant anatomical landmarks in the full image.
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Table 1: Performance Comparison of ConvNeXt+ with and without Knowledge Distillation (KD)

Model Accuracy (%) Precision (%) Recall (%) F1 (%)
ConvNeXt+ 79.97 80.65 79.97 78.87
ConvNeXt+ (KD) 83.05 83.26 83.05 82.07

Table 2: Performance Comparison of Classification Models on our SOS Dataset

Model Accuracy (%) Precision (%) Recall (%) F1 (%)
EfficientNet-B0 70.58 69.52 70.58 69.13
ResNet34 75.07 75.01 75.07 74.05
ResNet50 74.79 74.08 74.79 73.79
ConvNeXt 78.99 78.57 78.99 78.35
ConvNeXt+ (Ours) 79.97 80.65 79.97 78.87

ii) Precision and Recall: By aligning the student’s Grad-
CAM outputs with the teacher’s spatial knowledge, both pre-
cision and recall exceed 83%, indicating a balanced improve-
ment in identifying each SOS fusion stage without inflating
false positives or false negatives.

iii) F1 Score Increase: The F1 score rises from 78.87% to
82.07%, affirming that KD mitigates misclassifications where
morphological changes might be subtle or confounded by sur-
rounding structures. This indicates that the distilled student
model is more robust and consistent across stages.

(a) Incorrect Focus

(b) Correct Focus

Fig. 3: Grad-CAM visualizations comparing incorrect (a) and
correct (b) model focus [19]. In (a), the red areas show where
the model focuses more, and the blue areas indicate less atten-
tion. In (b), after training with the proposed framework, the
heatmap correctly highlights the region of interest, ensuring
accurate and interpretable decision-making.

Qualitative Observations:
The KD-enabled student produces Grad-CAM heatmaps

better aligned with the synchondrosis region (Fig. 3), sup-

porting our hypothesis that localized knowledge transfer sup-
presses irrelevant background and enhances SOS classifica-
tion.

4. CONCLUSION

In this study, a novel deep learning framework was proposed
for automated SOS fusion staging that effectively balances
localized anatomical precision and holistic image interpre-
tation. Robust knowledge distillation is enabled through a
teacher-student paradigm, where the teacher model is trained
on expertly cropped ROIs, and the student model operates
on uncropped images. Our inclusion of a Grad-CAM-based
regularization term ensures that clinically relevant regions re-
main the focal point, thereby boosting interpretability and
diagnostic accuracy. Experimental results demonstrate that
our approach achieves state-of-the-art performance on a com-
prehensive SOS dataset, outperforming conventional models.
The combination of YOLOv11-guided landmark detection,
ConvNeXt+ backbones, and knowledge distillation led to sig-
nificant gains in both classification metrics and visual inter-
pretability. In future work, we aim to explore more advanced
attention mechanisms and multi-task learning setups to fur-
ther refine skeletal maturity assessments. Our findings pave
the way for more reliable and scalable AI-driven orthopedic
and forensic applications.
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