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Abstract—Infant cry analysis serves as a non-invasive diagnos-
tic tool for detecting pathological conditions. This study analyzes
infant cry acoustics using formant distribution analysis in 3-D
across Mel, Bark, Cochlear and Gammatone scales, visualizing
fundamental frequency (F0 ), and the first two formants (F1 ), and
(F2 ) for normal vs. pathological cry classification. The dataset
comprises cries from Baby Chillanto, Baby Chillanto 2.0, and DA-
IICT corpora, covering six pathologies. Harmonics-to-Noise Ratio
(HNR), jitter, and shimmer are examined to assess phonatory
irregularities, while violin plots highlight statistical dispersion
in cry variability. Formant Space Area (FSA) via convex hull
analysis quantifies spectral dispersion, offering a novel biomarker
for pathology differentiation. For classification, both handcrafted
spectral features (Mel Frequency Cepstral Coefficients, Gamma-
tone Frequency Cepstral Coefficient, Cochlear Filter Cepstral
Coefficients and Bark Frequency Cepstral Coefficients) and deep
learning-based embeddings (HuBERT, wav2vec 2.0, XLS-R) are
evaluated using CNN and Bi-LSTM models. BFCC outperforms
MFCC, CFCC and GFCC, while deep learning embeddings
enhance classification accuracy. Beyond classification, radar plots,
convex hull mapping, and 3-D formant visualizations provide
deeper insights into cry-based pathology detection.

Index Terms—Formants,HNR, shimmer,Spectral Features, DL
Models.

I. INTRODUCTION

Infant cries serve as an early indicator of neurological
and physiological conditions, providing crucial insights into a
newborn’s health status. Unlike adult speech, infant cries are
reflexive vocalizations influenced by both neurological devel-
opment and physiological constraints, making their acoustic
properties valuable for diagnosing underlying pathologies.
Traditional infant cry assessments are subjective, but advances
in acoustic analysis and deep learning enable objective, auto-
mated pathology detection.

This study presents a comprehensive acoustic analysis of
infant cries, examining formant distribution across four per-
ceptual scales—Mel, Bark, Cochlear, and Gammatone—to
assess how pathological conditions alter cry characteristics.
Unlike previous studies relying on MFCCs [1] or conventional
frequency analysis, this work explores multi-scale formant
variations for a deeper perceptual understanding. Fundamental
frequency (F0 ), formant frequencies F1 ,F2 , and voice quality
parameters such as Harmonics-to-noise ratio (HNR), jitter,
and shimmer are analyzed to quantify phonatory irregularities
linked to medical conditions.

The dataset used in this study is compiled from Baby
Chillanto, Baby Chillanto 2.0, and the DA-IICT Infant Cry

dataset, and a combination of the two, covering six patholog-
ical condition.

Compared to existing studies on infant cry [2], this work
explores handcrafted features and deep learning features as
well for cry classification achieving higher accuracy and better
pathology differentiation. Additionally, the use of convex hull-
based formant space analysis provides a novel diagnostic
marker, improving interpretability. The inclusion of Bark-
scale features further enhances separability, offering a more
perceptually relevant representation than traditional Mel or
Gammatone scales.

II. TECHNICAL APPROACH

A. Voice Quality Analysis
Pathological cries often exhibit instability in pitch i.e. [3]

and amplitude, which can be quantified using jitter, shimmer
[4], and HNR [5] .

1) Jitter (Pitch Variation): Jitter measures the cycle-to-
cycle frequency variation and is computed as:

Jlocal =

∑N−1
i=1 |Ti − Ti+1|
(N − 1) · T̄

, (1)

where Ti is the pitch (or fundamental) period of the ith

glottal cycle, and T̄ is the mean period. High jitter values
indicate greater irregularity in F0 , associated with pathological
cries.

2) Shimmer (Amplitude Variation): Shimmer quantifies
cycle-to-cycle amplitude fluctuations:

Slocal =

∑N−1
i=1 |Ai −Ai+1|
(N − 1) · Ā

, (2)

where Ai is the amplitude of the ith cycle, and Ā is the
mean amplitude. Increased shimmer values indicate instability
in vocal intensity.

3) Harmonics-to-Noise Ratio (HNR): It represents the ratio
of harmonic (periodic) energy to noise energy:

HNR = 10 log10

(
Pharmonic

Pnoise

)
, (3)

where Pharmonic is the power of harmonic components, i.e.
integral multiple of fundamental frequency (F0 ) and Pnoise is
the power of noise components. Lower HNR values indicate
greater breathiness or noisiness, common in asphyxiated or
neurologically impaired infants.
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III. EXPERIMENTAL SETUP

In this Section, we describe the experimental setup and
dataset used for the classification of normal vs. pathological
infant cries.

A. Datasets Description

This study utilized multiple infant cry datasets to ensure
robust classification performance. The datasets included Baby
Chillanto [6] (D1), containing normal and pathological cries,
and Baby Chillanto 2.0 [7], an extended version with addi-
tional samples as shown in Table I. Additionally, the DA-IICT
Infant Cry Corpus (D2) [8], an in-house dataset was used. A
combined dataset, D3, was formed by merging D1 and D2
comprising of 6 pathalogies.

B. Feature Extraction and Representation

1) Hand-crafted Features: Feature extraction was per-
formed to derive meaningful representations of infant cries.
The primary feature sets included Mel-Frequency Cepstral
Coefficients (MFCCs) [9], which capture the spectral envelope
of cry signals. Gammatone Frequency Cepstral Coefficients
(GFCCs) [10] were utilized to incorporate auditory model-
inspired features, enhancing classification performance. Bark
scale-based features were extracted to represent frequency
information in a perceptually relevant manner. Additionally,
Cochlear Frequency Cepstral Coefficients (CFCCs) [11] were
derived to simulate cochlear frequency mapping, offering an
alternative biologically inspired representation of infant cry
acoustics.

The Bark scale models human auditory perception and is
given by:

B(f) = 13 arctan(0.00076f) + 3.5 arctan

((
f

7500

)2
)
,

(4)
where f is the frequency in Hz, and B(f) is the frequency

in the Bark scale.
2) DL Models: Feature extraction was also performed using

self-supervised deep learning models to derive high-level
representations of infant cries. wav2vec 2.0 [12], HuBERT
[13], and XLS-R [14] models were employed to capture rich
temporal and spectral structures beyond traditional handcrafted
features. wav2vec 2.0 leverages contrastive learning to extract
phonetic and acoustic variations directly from raw waveforms,
while HuBERT utilizes masked speech modeling to learn
discrete unit-based representations, improving robustness in
pathology differentiation. XLS-R, a multilingual extension of
wav2vec 2.0, was explored in three model sizes (300M, 1B,
and 2B). These deep representations were compared with
handcrafted features, demonstrating superior performance in
distinguishing pathological cries [15]. All audio recordings
were resampled to 16 kHz, with silence removed and am-
plitude normalized.
The dataset was split into 80% training, 10% validation,
and 10% testing, ensuring balanced pathology distribution.

TABLE I
DISTRIBUTION OF PATHOLOGIES IN D1 AND D2

Class Baby Chillanto 2.0 DA-IICT
Asphyxia 340 -

Deaf 879 -
Asthma - 215

Hypoxic-Ischemic Encephalopathy - 182
Hypothyroidism 47 -

Hyperbilirubinemia 9 -

Spectrograms were extracted for handcrafted features, while
raw waveforms were used for deep learning models. Feature
extraction included log-energy normalization and segmenta-
tion into fixed-duration frames for consistency.

C. Classifiers

The classifiers used in this study include Convolutional
Neural Network (CNN) [16] and a Bi-directional Long Short-
Term Memory (Bi-LSTM) network. For CNN, an Adam
optimizer was used with a learning rate of 0.003. The input
shape was set to 20 × 893 × 1. The Bi-LSTM model was
trained with a learning rate of 0.003, a batch size of 32, and
a hidden size of 256. Dropout layers with a dropout rate of
25% were applied to prevent overfitting. In both models, the
input feature dimension was fixed at 20 for consistency across
all samples.

IV. ACOUSTIC ANALYSIS OF INFANT CRIES

This section analyzes infant cry acoustics and perception,
focusing on formant distribution, voice quality (jitter, shimmer,
HNR), and perceptual scales (Mel, Bark, Cochlear, Gamma-
tone). Variations in F1 and F2 are visualized using 3-D scatter
and violin plots. Deep learning models (wav2Vec2, HuBERT,
XLS-R) enhance classification accuracy, while formant-based
analysis offers interpretable, clinically relevant insights for
early diagnosis [6].

Fig. 1. Acoustic Feature Statistics of Infant Cries Across Different Conditions.

A. Analysis of F0 and Voice Quality Measures

Fig.1 and Fig.2 represent the acoustic parameters F0 mean,
F0 standard deviation, formants F1 and F2 , jitter, shimmer, and
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HNR measured infant cries across normal and pathological
cries. Normal cries exhibit the highest HNR (9.16 dB) and
lowest jitter (0.15%) and shimmer (0.18%), indicating stable
phonation. In contrast, asphyxia, hypothyroidism, and hyper-
bilirubinemia show lower HNR and increased jitter/shimmer,
suggesting aperiodic, weak cry signals. Deaf infants produce

Fig. 2. Acoustic Feature Statistics of Infant Cries Across Conditions.

the highest mean F0 (674.43 Hz), likely due to lack of auditory
feedback. Normal cries show broad F1 and F2 distributions,
whereas asthma and HIE exhibit more constrained patterns,
indicating vocal tract shift in resonance. Asphyxia and deaf-
ness show wider F1 and F2 variability, reflecting unstable
articulation. Hyperbilirubinemia and hypothyroidism display
skewed formant distributions, suggesting irregular cry pat-
terns.Pathological cries generally show more variation in for-
mant frequencies, highlighting irregular vocalization patterns.
Beyond voice quality markers such as jitter and shimmer,
formant frequency shifts further characterize cry instability,
making them crucial for pathology detection.

B. Formant Space and Trajectory Analysis

Fig.3 is a radar plot that provides a comparative view of F0

, F1 , and F2 across multiple conditions [17].
Notably, asphyxia and hyperbilirubinemia exhibit wider

formant areas, while asthma and HIE display more compact
distributions. Fig. 4 further supports these findings, show-
ing violin plots of F1 and F2 distributions, where asphyxia
and deafness have broader variability, while asthma remains
compact. These visualizations highlight formant structure dif-
ferences across pathologies, providing valuable biomarkers
for cry-based classification. Deaf infants exhibit higher F0

values, suggesting pitch regulation deficits due to impaired
auditory feedback, while hyperbilirubinemia presents reduced
formant variability, reflecting restricted cry articulation. These
visualizations highlight key acoustic markers that differentiate
normal and pathological cries, aiding in early diagnosis.

Fig. 5 (formant trajectory) compares the temporal variation
of F1 and F2 between normal and asphyxiated infants [18].
Normal cries show relatively stable formant patterns, whereas
asphyxiated cries display greater fluctuations, indicating vocal

Fig. 3. Radar plot of infant cry formant features ( F0 , F1 , F2 ) across different
infant cries.

Fig. 4. Violin plot for F1 (left) and F2 (right) .

instability due to respiratory distress. Fig. 6 visualizes the
distribution of F0 , F1 , and F2 across normal vs. pathological
cries. Distinct clusters indicate that certain pathologies, such
as asphyxia and hyperbilirubinemia, exhibit notable shifts in
formant frequencies, reflecting altered vocal tract resonance.
Bark scale . Among the perceptual scales used (Mel, Bark, and
Gammatone), the Bark scale provided the cleanest distinction
between normal and pathological cries, enhancing separability
in acoustic analysis.

Fig. 5. Formant Trajectories of Normal vs. Asphyxia Infant Cries.
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C. Convex Hull-Based Formant Space Area (FSA)

To quantify articulatory constraints across different cry
conditions, we compute the FSA. Given a set of formant
frequency coordinates F = {(F1i , F2i)}, the convex hull
enclosing these points is computed as:

AFSA =
1

2

N∑
i=1

(xiyi+1 − xi+1yi) (5)

where (xi, yi) are consecutive points in the convex hull and
N is the number of formant pairs forming the boundary Fig.
7 presents the formant space distribution of infant cries across
conditions, with F1 plotted against F2. Convex hull-based For-
mant Space Area (FSA) quantifies articulatory constraints [19].
Larger FSA, observed in deafness and hyperbilirubinemia, re-
flects increased vowel dispersion due to altered neuromuscular
control or lack of auditory feedback. In contrast, smaller FSA
in HIE and asphyxia suggests restricted articulatory movement
from neurological impairments. Asthma and hypothyroidism
show moderate FSA, linked to respiratory and metabolic
effects. Hunger cries exhibit variability due to distress, while
normal cries display a balanced FSA, indicative of typical
phonatory development.

Fig. 6. Formant Distribution of Infant Cries in 3-D Bark Frequency Scale for
6 Pathologies.

V. EXPERIMENTAL RESULTS

Beyond feature analysis, classification is crucial for au-
tomated pathology detection [20], [21]. Hence, we evaluate
the effectiveness of both handcrafted and deep learning-based
features in distinguishing normal vs. pathological cries.

A. Comparison Among Various Feature Sets

Table II compares classification accuracy across D1, D2,
and D3 for different feature extraction techniques, highlighting
the strengths of both deep learning and handcrafted fea-
tures. XLS-R 300M achieves the highest accuracy due to
its multilingual training, larger dataset exposure, and strong
temporal modeling, effectively capturing nonlinear distortions

TABLE II
PERFORMANCE COMPARISON OF DEEP LEARNING MODELS AND

HANDCRAFTED FEATURE SETS FOR INFANT CRY CLASSIFICATION USING
BI-LSTM AND CNN CLASSIFIERS

Classifiers Models D1 D2 D3 (D1 + D2)

Bi-LSTM

wav2vec 2.0 87.62 92.46 93.87
XLS-R 1B 94.38 96.43 97.33
XLS-R 2B 96.45 96.56 96.28

XLS-R 300M 99.68 98.95 99.94
HuBERT 81.23 84.89 94.62
MFCC 96.66 88.98 92.15
GFCC 96.58 91.65 93
BFCC 97.23 93.11 97.32
CFCC 96.79 90.43 94.01

CNN

wav2vec 2.0 87.62 92.46 93.87
XLS-R 1B 94.38 96.43 97.33
XLS-R 2B 96.45 96.56 96.28

XLS-R 300M 99.68 98.95 99.94
HuBERT 81.23 84.89 94.62
MFCC 95.72 88.31 91.24
GFCC 96 90.48 93.82
BFCC 97.05 92.45 95.33
CFCC 97 90.91 95

and phonatory irregularities. However, deep learning models
often lack interpretability, making handcrafted features such
as BFCC and GFCC valuable for analyzing spectral patterns
in a more explainable way.

Among handcrafted features, BFCC outperforms others
due to its Bark-scale resolution, while CFCC improves
upon MFCC but lacks BFCC’s perceptual optimization. The
combined dataset (D3) further enhances accuracy, reducing
dataset-specific biases and improving model generalization.
Some conditions, such as asphyxia and HIE, remain harder
to classify due to overlapping acoustic patterns, whereas
deafness and hyperbilirubinemia show clearer spectral shifts,
making them easier to distinguish. Overall, XLS-R 300M is
the most effective feature extractor, with BFCC and GFCC
as strong handcrafted alternatives. We employed two distinct
DNN classifiers, namely, CNN and Bi-LSTM , in order to
address any potential classifier model bias during performance
evaluation. The results shown Bi-LSTM outperforms CNN.

VI. SUMMARY OF KEY FINDINGS

This study analyzes infant cries using acoustic features
such as F0 , formants, jitter, shimmer, and HNR to identify
pathology-specific vocal patterns. Pathological cries exhibit
greater instability, with increased jitter and shimmer, whereas
normal cries maintain periodic phonation.Formant space anal-
ysis shows that the Bark scale offers the clearest separation of
pathologies. XLS-R 300M achieves the highest classification
accuracy, while BFCC and GFCC also perform well. Com-
bining datasets further boosts performance, highlighting the
potential of acoustic features for AI-driven neonatal screening
and early, non-invasive diagnosis.
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Fig. 7. Formant space area across normal vs. pathological cries.
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