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ABSTRACT

Knee Osteoarthritis (KOA) is a prevalent degenerative joint
disease, with diagnosis and management predominantly reliant
on radiographic analysis, particularly the Kellgren–Lawrence
(KL) scale. Current deep learning methodologies for the au-
tomatic diagnosis of KOA primarily utilize raw X-ray images,
which are often compromised by noisy texture artifacts. These
artifacts can obscure critical shape cues that clinicians prior-
itize to determine the KL grading system. In this study, we
present a novel morphological approach that emphasizes the
geometric structure of the knee joint, thereby simplifying the
model’s inductive bias and directing training towards mean-
ingful bone shapes. Our method employs the segmentation
of input images to automatically extract precise anatomical
landmarks on the femur and tibia, utilizing the Segment Any-
thing Model (SAM). These landmarks are represented as nodes
within a graph, with edges defined by geometric relationships,
such as distances, thereby encoding both local and global
structural information of the joint. An EdgeConv-based Graph
Neural Network (GNN) classifier is subsequently employed to
process this graph representation, effectively capturing inter-
and intra-bone relationships to predict the KL grades of KOA
severity. By adopting a graph-centric framework, our approach
exhibits inherent invariance to translation, rotation, and scal-
ing, while robustly representing subtle morphological changes
that are critical for accurate diagnosis. To the best of our
knowledge, this represents the first deep learning method that
leverages morphological features for KOA assessment. Val-
idation experiments conducted across various KL grade con-
figurations (including all classes, 0–1, and 0–2) consistently
demonstrate state-of-the-art classification performance.

Index Terms— Graph Neural Networks, Biomedical Im-
age Analysis, Depp Learning, Knee Osteoarthritis

1. INTRODUCTION

Knee osteoarthritis (KOA) is a degenerative disease charac-
terized by cartilage erosion, osteophyte formation, and sub-
chondral bone remodeling, often assessed via the Kellgren–
Lawrence (KL) grading system [1, 2]. While deep learning

(DL) has shown promise in automating KOA severity classifi-
cation [3, 4, 5, 6], prevailing methods predominantly analyze
raw pixel intensities or texture patterns in X-rays and of-
ten misaligned with the anatomical structures central to KL
grading. In [3], Nasser et al. introduced a discriminative
shape-texture CNN block to capture texture features alongside
shape descriptors, while Nguyen et al.[7] employed a semi-
supervised framework using mixup to counter distributional
gaps in limited training data. In [8, 4, 9], the authors proposed
vision transformer-based methods to enhance KOA classifica-
tion performance. Despite such advances, these methods often
emphasize local textures (e.g., trabecular patterns) or global
intensities without explicitly modeling the underlying bone
morphology, risking an overfocus on incidental features rather
than clinically validated anatomical structures.

In essence, although contemporary CNNs and Transform-
ers demonstrate proficiency in detecting local intensity gradi-
ents and fine-grained textural details[10, 11], they frequently
overlook crucial macro-level geometric relationships that form
the cornerstone of clinical KOA assessment. These critical
morphological indicators; including femoral–tibial alignment,
progressive joint space narrowing, and the precise configura-
tion and extent of osteophyte formation-represent the primary
visual markers that experienced radiologists prioritize when
performing reliable KOA staging. This disconnect between
algorithmic focus and clinical practice creates a fundamental
limitation: purely pixel-driven representations may effectively
capture incidental textural artifacts and localized intensity vari-
ations, but they inherently lack the structural framework neces-
sary to interpret and quantify the global shape transformations
that characterize morphological disease progression.

To bridge this gap, we propose a geometry-centric frame-
work that explicitly models bone morphology through graph
neural networks (GNNs). Our approach mirrors the radiolo-
gist’s workflow by first segmenting femoral and tibial contours
using the Segment Anything Model (SAM) [12], then con-
structing a graph where nodes represent anatomical landmarks
and edges encode geometric relationships (e.g., distances).
An EdgeConv-based classifier [13] processes this graph to
capture both local (e.g., osteophyte curvature) and global (e.g.,
femoral-tibial alignment) structural cues, directly aligning with
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Fig. 1: Overview of our pipeline: First, SAM is prompted to generate candidate masks M. The best mask m∗ is chosen based on
IoU with upper and lower bone templates (TU , TL). Next, a morphological graph Gjoint is constructed from the joint boundary
and processed by the proposed graph model fgraph(·; Θ). Finally, a linear layer produces the KOA severity logits ŷ.

KL grading clinical criteria. By design, our method is invariant
to translation, rotation, and scaling—critical for handling real-
world X-ray variability—while avoiding texture-driven biases
that hinder existing models.

Our main contributions are presented as what follows:

• Automatic Segmentation & Graph Construction. We
employ the Segment Anything Model (SAM) to isolate
precise bone contours and sample key landmarks, form-
ing a morphological graph that explicitly encodes shape
and spatial relationships crucial for KOA grading.

• Morphology-Centric Network. An EdgeConv-based
architecture that captures both local and global structural
cues, avoiding the texture biases common in radiograph-
only classifiers.

• Clinically Aligned Representation. By shifting atten-
tion to geometry-driven features, our approach more
faithfully reflects radiological biomarkers—improving
interpretability and enabling a robust KOA severity clas-
sification that resonates with clinical insights.

2. METHODOLOGY

We introduce a graph-based strategy that explicitly encodes
the joint’s anatomical structure to address the texture-centric
bias common in radiographic KOA classification. Figure 1
depicts our overall pipeline, which first derives high-fidelity
joint masks via SAM, then constructs a morphological graph
capturing the femoral–tibial geometry, and finally applies an
EdgeConv-based network to classify KOA severity.

2.1. Segmentation and Landmark Extraction

Automatic Mask Generation. Given a radiograph X ∈
RH×W×C , we prompt the Segment Anything Model (SAM) [12]
with dense grids of points, producing a set of candidate masks

M = {mi | i = 1, . . . ,M}.

Each candidate mask is then evaluated against predefined bone
templates (TU , TL) by computing intersection-over-union
(IoU). The mask m∗ with the highest IoU is assumed to be
the most accurate delineation of the joint area.
Graph Construction. From the boundary of m∗, we uni-
formly sample N landmarks {pi}Ni=1, where pi = (xi, yi) ∈
R2, ensuring consistent spacing along the bone contours. These
points form the vertex set V = {pi} in an undirected graph:

Gjoint = (V,E).

To define E, we apply a k-nearest neighbor search under a dis-
tance threshold τ . More concretely, for each vertex pi ∈ V ,

N (pi) = {pj | ∥pi − pj∥2 ≤ τ} ∪ κk(pi),

where κk(·) returns the k-nearest neighbors. We then set

E =
{
(pi, pj) | pj ∈ N (pi)

}
.

If Gjoint is initially disconnected, τ is iteratively increased un-
til the graph spans the joint region. This morphological repre-
sentation prioritizes macro-level bone geometry, avoiding the
subtle textural noise seen in raw radiographs.

2.2. Graph Model Classification

Morphological Classification via EdgeConv. Let X(ℓ) ∈
R|V |×dℓ represent node features at layer ℓ. At each layer, we
define edge features through an asymmetric mapping

eij = ϕΘ

(
xi, xi − xj

)
,

where xj is a neighbor of the central node xi, and ϕΘ :
Rdℓ × Rdℓ → Rdℓ+1 is a nonlinear embedding function (e.g.,
an MLP) with learnable parameters Θ, as depicted in Fig.2.
This adopted GNN convolutional operation, refereed as Edge-
Conv [13], has been widely adopted in GNN-based shape
classification, particularly in 3D point-cloud tasks due to its
strong capacity for modeling local geometric structure.
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Fig. 2: Left: Computing an edge feature eij , Right: The Edge-
Conv operation [13].

Concretely, for each node i with neighbor set N (i), the
EdgeConv layer produces updated features by aggregating lo-
cal subgraphs:

x
(ℓ+1)
i = max

j∈N (i)
ϕΘ

(
[x

(ℓ)
i , x

(ℓ)
j − x

(ℓ)
i ]

)
,

where [·, ·] denotes feature concatenation. Stacking multiple
EdgeConv layers (three in our case) systematically increases
the dimensionality of ϕΘ and captures deeper relationships
among bone landmarks, essential for distinguishing subtle
KOA-associated morphology.
Graph Normalization. After each EdgeConv layer, we em-
ploy GraphNorm [14] to maintain feature stability. For each
node’s updated feature x

(ℓ+1)
i ,

g
(ℓ+1)
i = γ

x
(ℓ+1)
i − µ

(
x(ℓ+1)

)
σ
(
x(ℓ+1)

)
+ ϵ

+ β,

where µ and σ respectively compute mean and standard devia-
tion over node features, and γ, β are trainable parameters. This
normalization encourages consistency within each graph and
aids convergence.
Output Layer. We aggregate each node’s feature via global
mean and max pooling to form a single morphology-rich vector
z, which a linear layer maps into KOA severity logits: ŷ ∈
RC , where C is the number of discrete KOA grades. Training
proceeds with a standard cross-entropy objective, allowing the
Graph Model to learn shape-relevant embeddings that better
align with clinical perceptions of osteoarthritis.

Fig. 3: T-SNE visualizations of learned embeddings for three
KOA classification tasks, from left to right: full multi-class
(KLG 0–4), binary classification KLG 0–1, and binary clas-
sification KLG 0–2.

3. RESULTS ANALYSIS

We evaluated our proposed GNN-based approach across three
distinct KOA classification setups: (1) binary KLG-0 vs. KLG-
1, (2) binary KLG-0 vs. KLG-2, and (3) the full multi-class

scenario with KLG-0–4 on the OAI Dataset[15]. For each task
we train the model and validate it based on the correspond-
ing classes labels, we adopt the same Train-Test split as other
methods in the literature.

3.1. General Observations

Table 3 presents a summary of state-of-the-art (SOTA) ap-
proaches for each classification task, indicating both accuracy
and F1-Score. Our graph-only solution surpasses all listed
baselines in each task, emphasizing the utility of explicit bone
morphology for KOA grading. This advantage remains consis-
tent even when moving from simpler binary tasks (KLG-0 vs.
KLG-1 or KLG-0 vs. KLG-2) to the more challenging multi-
class (0–4) classification. Notably, a purely radiograph-based
model often struggles with subtle anatomical changes, while
our graph-driven design highlights clinically relevant cues such
as femoral–tibial alignment and osteophyte formation.

3.2. Binary Classification Performance

KLG-0 vs. KLG-1. Table 2 (KLG-0 vs. KLG-1) reveals that
existing methods typically attain accuracies around 70–75%
[4, 16]. In contrast, our model achieves 85.66% accuracy
and 86.15% F1-Score, underscoring the model’s ability to
handle even mild or doubtful KOA stages through precise
bone-structure embeddings.
KLG-0 vs. KLG-2. For the second binary classification set-
ting, Table 1 (KLG-0 vs. KLG-2) shows prior works [8, 17, 18,
19, 20, 16] remain below 90%. Our model keep competitive
with other methods, achieving 88.12% accuracy and 88.20%
F1-Score—outperforming the best methods in this later one,
despite the complexity inherent in detecting moderate KOA
changes.

3.3. Multi-Class (KLG-0–4) Classification

Finally, Table 3 (All Classes 0–4) compares our approach to
the most prominent multi-class KOA classifiers [20, 21, 22, 23,
4, 9]. The graph-based method achieves 74.94% accuracy and
75.19% F1-Score, outperforming previous SOTA results by a
margin of roughly 2–5%. In this more challenging scenario,
capturing global morphological changes proves instrumental in
distinguishing borderline cases and advanced KOA stages.

3.4. T-SNE Visualization

Figure 3 provides a T-SNE plot for each classification setting,
illustrating how samples cluster based on the learned embed-
dings. Across all three tasks (binary and multi-class), our
graph-centric representation shows a distinct class separation.
thus, demonstrating that explicit anatomical structure helps the
model better discriminate subtle morphological variations.
3.5. Discussion

Overall, these results validate that a purely morphological ap-
proach can effectively capture the structural cues that radiolo-
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Table 1: State of the art Comparison on OAI Test set (KLG-0
vs. KLG-2) [24]

Model Accuracy (%) F1-Score (%)
Wang et al. 2024 [8] 89.80 87.66
Wang et al. 2023 [17] 89.14 86.78
Wang et al. 2023 [18] 89.54 87,62
Tiuplin et al. 2018 [19] 87.33 84.82
Antony et al. 2017 [20] 85.50 81.31
Nasser et al. 2020 [16] 82.53 83.48
Our - Graph Model 88.12 88.20

gists rely on for KOA diagnosis. Moreover, from a deep learn-
ing standpoint, mapping radiographic data onto an anatomi-
cally grounded graph addresses two pivotal challenges: (i) the
high-dimensional complexity of raw images, and (ii) the ten-
dency of standard convolutional layers to focus on local inten-
sity gradients rather than global bone geometry. Our strategy
counters these issues by sampling anatomically salient points
along the joint boundary and preserving spatial adjacency in a
learnable graph. Consequently, the GNN layers handle the data
in a domain where geometric relationships are explicit, high-
lighting osteophytes, joint space narrowing, and other struc-
tural cues integral to KOA diagnosis.

Table 2: State of the art Comparison on OAI Test set (KLG-0
vs. KLG-1) [24]

Model Accuracy (%) F1-Score (%)
Wang et al. 2024 [25] 70.21 -
Nasser et al. 2023 [4] 74.08 69.01
Nasser et al. 2020 [16] 69.83 70.95
Our - Graph Model 85.66 86.15

Table 3: State of the art Comparison on OAI Test set (All
Classes 0-4) [24]

Model Accuracy F1-Score
Antony et al. 2016 [20] 53.40 43.00
Antony et al. 2017 [20] 63.60 59.00
Tiulpin et al. 2018 [21] 66.71 -
Chen et al. 2019 [22] 69.60 -
Wang et al. 2022 [23] 69.18 -
Sekhri et al. 2023 [4] 70.17 67.00
Sekhri et al. 2024 [9] 72.40 70.00
Our - Graph Model 74.94 75.19

3.6. Ablation Study

We evaluate how variations in the Graph model architecture
influence classification performance on the OAI dataset [24].
Embedding Layer Depth. Table 4 examines three embed-
ding dimensions (D = {32, 64, 128}). A moderate dimension
of D = 64 achieves the best overall metrics, including 74.94%
accuracy and 75.19% F1. We surmise that a smaller dimension

Table 4: Ablation: Embedding Layer Depths on OAI Test set
(All Classes 0-4) [24]

Depth Accuracy Precision Recall F1

D = 32 60.57 65.37 60.57 56.87
D = 64 74.94 79.31 74.94 75.19
D = 128 71.26 76.80 71.26 70.54

Table 5: Ablation: Number of Graph Layers on OAI Test set
(All Classes 0-4)[24]

Layers Accuracy Precision Recall F1

2 Layers 46.49 37.64 46.49 38.04
3 Layers 74.94 79.31 74.94 75.19

(D = 32) underfits the morphological complexity, whereas a
larger dimension (D = 128) may introduce unnecessary pa-
rameter overhead, impairing generalization.
Number of Graph Layers. Table 5 compares two- versus
three-layer configurations of EdgeConv blocks. Employing
only two layers severely hinders performance (46.49% accu-
racy), indicating insufficient depth for capturing higher-level
geometric relationships. By contrast, three layers yield 74.94%
accuracy and 75.19% F1, underscoring the importance of
deeper graph-based representations for modeling bone mor-
phology in KOA.

4. CONCLUSION

We presented a learnable GNN-based approach for KOA sever-
ity classification, departing from conventional radiographic
pipelines that often emphasize local texture at the expense of
global bone geometry. By sampling key joint landmarks and
modeling them through a specialized graph neural network
(EdgeConv), we introduce a morphology-centric inductive
bias better aligned with clinical criteria. This design addresses
the high-dimensional nature of raw radiographs, redirects the
model away from incidental intensity artifacts, and highlights
macroscopic structural changes central to KOA diagnosis. Our
findings, emphasized by the state-of-the-art performance on
the complex OAI dataset [24], substantiate our hypothesis that
focusing on morphological cues—rather than purely pixel-
level details—offers significant gains in both interpretability
and performance for challenging KOA tasks.
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