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Abstract—Accurate diagnosis of spitzoid tumors is crucial, as
inappropriate treatment can have severe clinical consequences.
Epigenetic biomarker signatures compatible with low-cost molec-
ular techniques offer a promising strategy to enhance diagnostic
accuracy and deepen our understanding of the disease. In
this work, we introduce a novel framework for establishing
a reliable and interpretable epigenetic signature derived from
whole-genome bisulfite sequencing data and validated by py-
rosequencing. Our approach combines advanced multivariate
statistical techniques with two innovative methods. One efficiently
selects an epigenetic biomarker signature from preliminary
candidates, while the other adaptively addresses missing values
commonly encountered in molecular assays. Together, these
methods yield robust performance, high interpretability, and
consistency, suggesting a promising pathway toward a clinically
applicable diagnostic tool for spitzoid tumors.

Index Terms—Epigenetic biomarkers, spitzoid tumors, multi-
omics integration, logistic regression.

I. INTRODUCTION

Spitzoid tumors (ST) are melanocytic neoplasms charac-
terized by large spindle, epithelioid cellular morphology and
unpredictable clinical behavior [1]. These tumors are classi-
fied into three categories: the benign form, called Spitz Ne-
vus (SN); an intermediate category with uncertain malignant
potential, known as Atypical Spitz Tumor (AST) or Spitz
melanocytoma; and the malignant category, referred to as
Spitz Melanoma (SM) [1]. An accurate diagnosis is crucial to
prevent misclassification, leading to significant clinical con-
sequences and inappropriate treatment [2]. Diagnostic proto-
cols integrate histopathological examination, clinical data, and
molecular analysis; however, discrepancies between morpho-
logical features and clinical outcomes, coupled with significant
interobserver variability among pathologists, continue to pose
challenges [3].

Although multiple studies have revealed useful genetic
findings for diagnosing spitzoid tumors [4], few have examined
the potential of epigenetic alterations in this context [5].
The investigation of epigenetic modifications, such as DNA
methylation (DNAm) and microRNA (miRNA), has been
well-documented in various cancers, including melanoma [6].
DNAm profiles are specific to each cancer type and have
proven to be more stable and robust biomarkers than gene

expression, thereby offering greater reliability for early diag-
nosis [7]. Moreover, miRNAs are valuable for analysis because
many exhibit deregulation during melanoma progression [8].
Consequently, epigenetic biomarkers may provide a powerful
approach for accurately stratifying spitzoid tumors, ultimately
enhancing diagnostic accuracy.

Techniques such as whole-genome bisulfite sequencing
(WGBS) provide single-base resolution analysis of DNA
methylation by focusing on CpG sites (regions where cytosine
precedes guanine) that play a critical role in gene regulation.
These methods generate detailed epigenomic maps that reveal
subtle changes in tumor biology. However, the datasets result-
ing from these techniques are highly dimensional requiring
robust feature selection and interpretable algorithms to iden-
tify key methylation alterations and evaluate their diagnostic
impact. To validate these computational insights, targeted
methods such as pyrosequencing are commonly employed [9].
This technique precisely quantifies methylation at individual
CpG sites and offers a cost-effective solution for clinical
practice. Nevertheless, these approaches can occasionally yield
missing values due to unspecific amplification bands or subop-
timal primer hybridization, underscoring the need to establish
validation frameworks that effectively manage missing values
in real-world applications.

In this work, we introduce the first end-to-end frame-
work that seamlessly integrates multi-omic data and ma-
chine learning (ML) to identify and clinically validate epi-
genetic biomarkers for accurately classifying spitzoid tumors.
We first analyze DNA methylation and miRNA data from
formalin-fixed paraffin-embedded samples to identify can-
didate biomarkers using the Data Integration Analysis for
Biomarker discovery using Latent cOmponents (DIABLO)
[10] approach. These candidates are then refined through
the proposed Nested Iterative Logistic Distillation (NILD)
process. To ensure robustness in real-world scenarios, where
epigenetic variable extraction may be incomplete, we utilize
our Missingness-Adaptive Logistic Regression Tree (MALRT)
approach that dynamically adapts to missing data while main-
taining strong discriminative power and interpretability. This
comprehensive framework advances the discovery of epige-
netic biomarker signatures providing explainable methodolo-
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Fig. 1. Method overview. The developed framework comprises three main components: (a) the preprocessing of DNAm and miRNA data,
(b) the selection of an epigenetic biomarker signature for classifying spizoid tumors, and (c) the application of this signature to samples in
which the selected epigenetic biomarkers were obtained via pyrosequencing. Notation is detailed throughout the methodology section, and
the term “Omics” denotes various omic datasets.

gies that may contribute to developing a clinically viable tool
for enhancing the diagnosis of spitzoid tumors, with potential
applications in other pathologies.

II. METHODOLOGY

An overview of the proposed framework is illustrated in Fig.
1. The following subsections provide detailed descriptions of
its individual components.

a) Preprocessing miRNAs and DNA Methylation: Both
miRNA and DNAm data are preprocessed following a similar
workflow. Initially, raw FASTQ files undergo quality control
(QC) with FastQC and multiQC, after which adapters and
low-quality bases (Phred < 20) are removed using BBDuk,
and a second QC confirms data integrity. For miRNAs, the
clean reads are aligned to the human genome (GRCh38)
using Bowtie v1.3.1, quantified with Rsubread and miRBase
(v22), normalized via the trimmed mean M-values method
from edgeR, and low-expression miRNAs are filtered out. For
DNAm, bisulfite-treated reads are aligned with Bismark, and
the resulting BAM files are deduplicated with Bismark and
sorted with Samtools. These BAM files are then processed
with methylKit to calculate base-level methylation percent-
ages, and the data are filtered to remove CpG sites with fewer
than 10 reads or with coverage above the 99.9th percentile,
followed by normalization across samples for subsequent
analysis.

b) Selecting Epigenetic Biomarkers: The epigenetic
biomarkers with the greatest discriminatory power are selected
in two phases. First, the DIABLO method is used for a pre-
liminary selection, which is then refined using nested iterative
logistic distillation.

DIABLO extends sparse generalized canonical correlation
analysis to a supervised framework by incorporating class
labels into the integration of multi-omics data. Let X(1) ∈
Rn×p1 and X(2) ∈ Rn×p2 represent the DNAm and miRNA
data, respectively, each containing n samples and p1 or p2
variables. For the DNAm data, denote by a

(1)
q ∈ Rp1 the

coefficient vector associated with the q-th latent component
and define the corresponding latent component as t

(1)
q =

X(1)a
(1)
q , with q ∈ {1, 2, . . . , Q}, where Q is the maximum

number of latent components extracted from the DNAm data.
Similarly, for the miRNA data, denote by a

(2)
r ∈ Rp2 the

coefficient vector associated with the r-th latent component
and define the latent component as t

(2)
r = X(2)a

(2)
r , with

r ∈ {1, 2, . . . , R}, where R is the maximum number of
latent components extracted from the miRNA data. DIABLO
replaces one omics dataset with a dummy indicator matrix Y
that encodes the class membership (e.g., SN or SM) and seeks
these sparse coefficient vectors such that the latent components
are optimized to maximize the covariance between the datasets
while correlating with Y under an L1 constraint. Furthermore,
DIABLO provides a loading coefficient for each original
variable, clearly indicating its importance in discriminating
between classes.

To obtain a compact, optimal, and highly interpretable
epigenetic signature for the classification of spitzoid tumors,
we propose the NILD methodology. Initially, separated logistic
regression models were fitted for DNAm and miRNA data
following an additive iterative procedure: the DNAm variables
D = {d1, d2, . . . , dnD

} and the miRNA variables M =
{m1,m2, . . . ,mnM

}, ordered in descending order by their
DIABLO loading coefficients, were sequentially incorporated
into the models, thereby progressively refining performance as
each additional top-ranked variable was added. Subsequently,
an iterative and nested logistic regression was performed to
integrate both data types, defined as

log

(
p

1− p

)
= β0 +

k∑
i=1

βi di +

ℓ∑
j=1

γj mj ,

where p represents the probability of the positive class, and
the indices k = 1, . . . , nD and ℓ = 1, . . . , nM denote the
number of top variables selected from each omics dataset.
All models were trained and validated using stratified 5-fold
cross-validation, and the optimal model was chosen based on
achieving the highest AUC while utilizing the fewest variables
and omics techniques. Ultimately, NILD refines the initial
DIABLO selection to yield a final logistic regression model
based on an optimal subset of v variables.
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c) Validating Epigenetic Biomarkers: To address the
challenge of missing epigenetic measurements in pyrosequenc-
ing, which may preclude the direct application of the NILD-
derived logistic regression model, we propose the missingness-
adaptive logistic regression tree. MALRT organizes a collec-
tion of logistic regression models into a tree structure, where
each node corresponds to a distinct, non-empty subset s of
the v optimal variables. Thanks to the variable distillation
performed by NILD, the combinatorial challenge of fitting all
2v − 1 possible subsets becomes more feasible. For a new
sample, let s∗ ⊆ {1, . . . , v} denote the indices of the variables
with available measurements. MALRT then selects the pre-
fitted logistic regression model using the greatest number of
available variables. In this selected model, the log-odds are
given by

log

(
p

1− p

)
= β

(s∗)
0 +

∑
i∈s∗

β
(s∗)
i xi.

This framework efficiently accommodates missing data while
preserving the interpretability and predictive performance of
logistic regression.

III. EXPERIMENTAL SETTING

a) Dataset: The Pathology Department at the Hospi-
tal Clı́nico Universitario de Valencia, Spain, conducted a
comprehensive study of STs from 1985 to 2023. The team
meticulously searched the laboratory archives using the insti-
tution’s software, and each case was evaluated by experienced
pathologists specialized in spitzoid tumors. A total of 46 tumor
samples were included in the study, which were grouped into
two batches: a first batch of 22 SN and 11 SM, and a second
batch of 8 SN and 5 SM. The first batch was used for training
and the second for testing. For each sample, we acquired
DNAm and miRNA data. After preprocessing, DNA methyla-
tion was evaluated at 295,873 CpG sites, and expression levels
were measured for 289 miRNAs. The selected epigenetic
signature was confirmed by pyrosequencing on 5 SN and 7 SM
samples, constituting an independent external validation cohort
completely distinct from the previously analyzed samples.
Data can be shared upon request and by prior agreement with
INCLIVA and Universitat de València.

b) Processing: The DIABLO method was applied to
the training epigenetic dataset. The analysis was limited to
selecting 10 to 30 methylation positions and 1 to 5 miRNAs,
since exceeding these numbers is impractical for RT-qPCR.
In addition, only the first latent variable, which captures the
maximum shared discriminative variation in both omics data
types, was used. Experimental evidence demonstrated that this
single component perfectly distinguished SN from SM in the
training set, resulting in a more parsimonious model. Further-
more, the training data were standardized using the mean and
standard deviation, and this normalization was subsequently
applied to both the test set and the pyrosequencing validation
set. The preprocessing of miRNAs and methylation positions,
along with the DIABLO analysis, was performed in R 4.2.0

and bash. The main modules included Subread 2.0.3, Bismark
0.24.0, methylKit 1.20.0, and mixOmics 6.23.2.

c) Classification algorithms: The NILD and MALRT
procedures, along with comparisons to other machine learning
(ML) methods, were implemented in Python. Since grid search
hyperparameter optimization was applied to all models, a
Docker image with Python 3.8 was used to ensure repro-
ducibility. The main modules included numpy 1.22.2, pandas
1.5.2, scikit-learn 0.24.2, and xgboost 1.7.1.

IV. RESULTS
a) Epigenetic Biomarker Evaluation: The results ob-

tained using DIABLO are presented in Table I. These findings
reveal that 20 methylation positions and only 1 miRNA
were selected from the complete set of DNAm positions and
miRNAs. The coefficients associated with each methylation
position underscore their importance in shaping the latent
variable to which they contribute.

Given the biomarkers initially selected by DIABLO, the
NILD method can be applied at the multi-omics level. The
results are presented in Fig. 2. As observed, the AUC im-
proves with the selection of a greater number of methylation
positions. Moreover, adding the miRNA does not significantly
enhance the performance of the logistic regression models
fitted using different methylation positions. As a result, the
most efficient model, achieving the best performance, consists
of 18 methylation positions. The coefficients of the fitted
logistic regression are shown in (1).

The classification metrics were analyzed on the WGBS
test set for the best logistic regression model. Alternative
models, including k-nearest neighbors (KNN), random forest
(RF), and extreme gradient boosting (XGB), were also fitted
using the 18 selected methylation positions. Table II shows
that logistic regression achieved the highest performance in
terms of accuracy (ACC), sensitivity (SEN), specificity (SPE),
positive predictive value (PPV), negative predictive value

TABLE I
MULTI-OMICS BIOMARKERS SELECTED BY THE DIABLO METHOD.

ID DNAm position Coefficient miRNA Coefficient
A chr21:42976620 -0.56 hsa-miR-324-5p 1.00
B chr3:77806280 -0.40
C chr15:91397225 -0.30
D chr13:23584928 0.28
E chr17:53494610 -0.27
F chr12:91381168 0.25
G chr15:91417325 -0.24
H chr4:87089695 0.21
I chr3:189791255 0.19
J chr13:75454496 0.13
K chr22:32021158 -0.11
L chr7:81411051 0.11
M chr1:107688094 0.10
N KI270442.1:77402 -0.10
O chr15:93698686 -0.10
P chr3:151933366 0.08
Q chr8:48721155 -0.08
R chr1:87169347 -0.05
S chr12:88144889 0.03
T chr2:177317964 0.02
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Fig. 2. Multi-omics nested iterative logistic distillation results

(NPV), F1-score (F1) and area under the receiver operating
curve (AUC), demonstrating its strong generalization ability
on WGBS-derived methylation data.

Pmelanoma(IDDNAm) =
1

1 + e−(β0+β·IDDNAm)

β0 = −0.7

β · IDDNAm pos = −0.89A− 0.86B − 1.06C

= +0.36D − 1.40E + 1.73F

= −1.37G+ 0.74H + 1.65I

= +1.49J − 0.65K + 1.13L

= +0.99M − 0.31N − 0.64O

= +0.12P − 1.25Q− 0.19R

(1)

TABLE II
LOGISTIC REGRESSION RESULTS ON THE WGBS TEST SET AND

COMPARISON WITH ML MODELS.

MODEL ACC SEN SPE PPV NPV F1 AUC
KNN 0.77 0.40 1.00 1.00 0.72 0.57 0.70
RF 0.77 0.40 1.00 1.00 0.73 0.58 0.72

XGB 0.77 0.60 0.88 0,75 0.78 0.67 0.74
LR 0.92 0.80 1.00 1.00 0.89 0.89 0.90

b) Validation Results: For the external validation cohort,
pyrosequencing was employed to extract values from the 18
key methylation positions identified as crucial for distinguish-
ing between SN and SM. Due to issues with the designed
primer pairs, methylation values for positions with ID I, K, L,
M, N, Q, and R could not be obtained for any sample. Table
III reports the number of methylation positions successfully
extracted for each sample.

Table IV presents the performance of the MALRT method-
ology, trained on WGBS data, when applied to an external
validation cohort obtained via pyrosequencing (PYRO). In
addition, the logistic regression models derived from the
PYRO samples were also evaluated on the WGBS test set.
For comparison with alternative ML approaches, these models
were trained using the available variables from each pyrose-
quencing validation sample, yielding results for both WGBS
and PYRO data. The performance metrics reveal that logistic

TABLE III
CPG SITES EXTRACTED PER SAMPLE FOR THE INDEPENDENT

VALIDATION COHORT VIA PYROSEQUENCING

DNAm positions Samples DNAm positions IDs

11 8 A, B, C, D, E, F
G, H, J, O, P

10 2 A, C, D, E, F,
G, H, J, O, P

9 1 A, C, D, E, F,
G, H, J, O

2 1 F, G

regression (through MALRT) not only achieves superior ACC,
F1 and AUC, but also exhibits the smallest relative percentage
performance degradation (∆Pct) when transitioning from the
WGBS test set to the pyrosequencing validation cohort.

TABLE IV
RESULTS FOR AVAILABLE VARIABLES IN PYROSEQUENCING SAMPLES IN
WGBS, PYRO, AND THE PERCENTAGE CHANGE IN METRICS USING THE

MALRT METHODOLOGY AND ML MODELS.

MODEL ACC SEN SPE PPV NPV F1 AUC
KNNWGBS 0.79 0.47 1.00 1.00 0.75 0.62 0.73
KNNPYRO 0.58 0.29 1.00 1.00 0.50 0.44 0.64
KNN∆Pct ↓ 26.6% ↓ 38.3% 0% 0% ↓ 33.3% ↓ 29.0% ↓ 12.3%
RFWGBS 0.78 0.57 0.92 0.83 0.77 0.67 0.74
RFPYRO 0.58 0.29 1.00 1.00 0.50 0.44 0.64
RF∆Pct ↓ 25.6% ↓ 49.1% ↑ 8.7% ↑ 20.5% ↓ 35.1% ↓ 34.3% ↓ 13.5%

XGBWGBS 0.78 0.60 0.90 0.79 0.78 0.68 0.75
XGBPYRO 0.50 0.71 0.20 0.56 0.33 0.63 0.46
XGB∆Pct ↓ 35.9% ↑ 18.3% ↓ 77.8% ↓ 29.1% ↓ 57.7% ↓ 7.4% ↓ 38.7%
LRWGBS 0.81 0.80 0.81 0.74 0.87 0.77 0.81
LRPYRO 0.75 0.57 1.00 1.00 0.63 0.73 0.79
LR∆Pct ↓ 7.4% ↓ 28.8% ↑ 23.5% ↑ 35.1% ↓ 27.6% ↓ 5.2% ↓ 2.5%

c) Biomarker Coefficient Analysis: Both the optimal
logistic regression model and the MALRT are inherently
interpretable, allowing for a transparent understanding of how
each feature influences the decision-making process. However,
logistic regression models fitted with different variables may
yield varying interpretations for each variable. Fig. 3 compares
the coefficients obtained from the optimal logistic regression
model and those derived using the MALRT method. For
MALRT, the reported coefficients represent the mean value
across all fitted models and their corresponding standard
deviations.

Analyzing the coefficient estimates offers valuable insights.
First, the vast majority of coefficients retain their sign whether
they are derived from the optimal logistic regression model or
from the MALRT submodels. This consistency is crucial, as it
confirms that the qualitative interpretation of each methylation
position’s contribution remains intact. In logistic regression,
a positive coefficient implies that a one-unit increase in the
predictor is associated with an increase in the log odds
of the outcome (i.e., the natural logarithm of the odds of
being classified as SM rather than SN), whereas a negative
coefficient indicates the opposite.

Moreover, although the MALRT method generally produces
coefficients with higher magnitudes, suggesting a stronger ef-
fect for individual variables, the relative proportional relation-
ships among the coefficients are preserved. This maintenance
of proportionality ensures that the inferred relative importance
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Fig. 3. Comparison of intercept and coefficient values from the
epigenetic biomarker signature and MALRT approach.

of each variable in classification remains consistent.
Finally, the variability in the coefficients obtained from the

MALRT is relatively low, indicating that these estimates are
stable across different submodels. This stability, together with
the preserved sign and proportional relationships, highlights
the robustness of the MALRT methodology for managing
missing data while maintaining both robust performance and
interpretability.

V. CONCLUSION

Developing an epigenetic biomarker signature to classify
spitzoid tumors using cost-effective molecular techniques
holds significant clinical value. In this work, we propose
an end-to-end methodology that combines epigenomic multi-
omics data with interpretable bioinformatics and machine
learning techniques. Our approach yields a robust epigenetic
signature with direct clinical applicability while providing an
explainable framework that clarifies the contribution of each
individual biomarker to patient diagnosis. Using DIABLO
along with our NILD and MALRT methods, we derived an

epigenetic signature from WGBS data and validated it with py-
rosequencing data. Our findings reveal that miRNAs play only
a minor role in classifying spitzoid tumors compared to DNA
methylation, and that MALRT preserves both performance and
interpretability with minimal degradation. The primary limita-
tions of this study are the small sample size and the occurrence
of missing methylation values in the pyrosequencing data,
challenges inherent to the tumors under investigation and the
molecular techniques employed. Overall, this work paves the
way for further analysis of the discriminative power of DNAm
and the potential of epigenetic biomarkers to stratify atypical
spitzoid tumors. Moreover, the proposed framework could be
readily extended to other pathologies amplifying its impact on
precision medicine and epigenetics.
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