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Abstract—Fetal heart rate (FHR) monitoring is vital to assess
fetal well-being during labor. However, clinical decisions based
on subjective visual interpretations can lead to inconsistencies,
unnecessary cesarean sections, and legal disputes. The key
challenges in the computerized analysis of FHR include class im-
balance, where healthy cases vastly outnumber distress cases, lack
of confidence score, as most approaches focus on classification
rather than continuous fetal health assessment, and limited fea-
ture interpretability, which hinders clinical adoption. To address
these challenges, we propose a One-Class Gaussian Process model
trained on interpretable features from healthy FHR segments.
This model learns the healthy FHR distribution and identifies
potential anomalies. We further introduce the health confidence
score (HCS), a continuous metric quantifying fetal well-being.
This score offers clinicians an intuitive and interpretable measure
of the fetus’s condition, thereby supporting timely and informed
clinical decision-making. The results demonstrate the model’s
robust 96% accuracy in classifying FHR segments.

Index Terms—Cardiotocography (CTG), Fetal Heart Rate
(FHR), Gaussian Processes, Anomaly Detection

I. INTRODUCTION

Since the 1960s, monitoring fetal heart rate (FHR) and
uterine contractions (UC) during labor has been a routine
practice [1]. Doctors screen Cardiotocography (CTG) trac-
ings continuously before birth to detect any unusual activity
indicating a risk to neonatal and maternal health [2]. These
continuous signals are a valuable asset in obstetrics, providing
critical insights in the delivery room to determine the optimal
timing for interventions in high-risk situations that could
lead to temporary or permanent harm to the infant or the
mother. The complexity of visual examination of these signals
prompted the National Institute of Child Health and Human
Development and the International Federation of Gynecology
and Obstetrics (FIGO) to publish guidelines for interpreting
FHR and UC [3]. However, the proposed CTG evaluation
guidelines have faced criticism for their simplistic approach
to interpretation [4].

Computerized analysis of FHR, UC, and their interrelation
has been employed since the 1980s to support obstetricians in
decision-making during labor [5]–[8]. The studies explore di-
verse methodologies, including morphological patterns, which
involve extracting features based on the available guidelines
[9] and nonlinear feature extraction methods that capture
subtle patterns not easily discernible visually. Additionally,
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artificial neural networks have been utilized to analyze these
time series data [10].

One key challenge in analyzing CTG signals is the extreme
class imbalance in available datasets. Most recorded cases
correspond to healthy outcomes, leading to a significant un-
derrepresentation of the unhealthy category. This underrepre-
sentation hinders robust model training and accurate anomaly
detection, which results in poor classification performance, as
many algorithms mistakenly assume the balanced distribution
between classes [11]. There have been different attempts to
handle imbalanced data. Most are based on eliminating bias
by data resampling (undersampling or oversampling) [12]–
[15]. Additionally, boost ensemble learning has been proposed
in [16], which uses the distribution of classification errors
to guide training. In each iteration, the most informative
examples from the majority class are selectively sampled to
improve classification performance.

It has been argued that deep neural networks achieve the
highest accuracy in classifying CTG recordings [17], [18].
However, the features learned by these models are often
complex and lack interpretability, which makes it challenging
to understand the decision-making process based on them
[19]. This underscores the need for explainable features that
provide meaningful insights into fetal health assessment [20].
According to FIGO guidelines, FHR tracings are classified
into three categories: normal, abnormal, and indeterminate
[3]. However, since FHR signals are continuous time series,
they can transition between these categories at different stages
of labor. This raises a critical question: how reliably and
accurately do these classifications reflect fetal health status
at any given time?

This paper tackles the issue of class imbalance by adopting
a one-class training approach. Our model is trained exclusively
on the majority class that represents healthy cases and which
allows effective detection of anomalies without being skewed
by the limited availability of unhealthy recordings. Moreover,
the features we extract from FHR signals are inherently
interpretable, which in turn improves clinical understanding
and decision-making. Additionally, we introduce a continuous
confidence score from 0 to 1 that represents the confidence
of the classification. This assessment provides clinicians with
a valuable tool to monitor CTG recordings and make timely
interventions.

The remainder of this article is organized as follows. Section
II provides an overview of existing methods for automatic
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FHR analysis, and Section III describes the workflow for
designing the model. In Section IV we provide details of the
experimental setup and evaluation metrics and present results
along with a discussion of the model’s performance. Finally,
Section V summarizes the key findings, discusses the clinical
implications, and outlines potential future research directions.

II. BACKGROUND

The primary goal of automated FHR analysis is to detect
fetal distress that requires immediate intervention during labor
while minimizing overdiagnosis, which can lead to unneces-
sary cesarean sections. In clinical practice, fetal well-being is
typically assessed based on the postnatal outcomes of new-
borns and laboratory tests. The key challenge lies in reliably
estimating these indicators during labor using intrapartum-
acquired signals. Most studies classify FHR outcomes based
on the umbilical cord blood pH value of the fetus at birth [21].
However, there is an ongoing debate regarding the validity
of pH labels and the precise threshold required for accurate
classification [22]. This section briefly reviews common FHR
features and introduces Gaussian Processes (GPs) and their
extension for anomaly detection.

A. Fetal Heart Rate Feature Extraction

A wide range of features has been explored in the com-
puterized analysis of FHR signals, including time-domain,
frequency-domain, and non-linear features. Time-domain fea-
tures, such as short- and long-term variability, provide valu-
able insights into overall heart rate trends and beat-to-beat
fluctuations and can be critical for assessing fetal well-being
[23]. Frequency-domain features, including energy in different
frequency bands, offer a deeper understanding of autonomic
nervous system regulation by analyzing the power spectral
density (PSD) of FHR signals [24]. Furthermore, non-linear
features, such as those derived from Poincaré plot analysis,
capture the complexity and irregularity of FHR patterns and
contribute to a more robust assessment of fetal status [25]. In
particular, features that reflect FHR variability are of special
importance in clinical evaluation and computerized analysis, as
they provide critical insights into fetal autonomic regulation
and adaptive responses to stressors [26]. These features im-
prove the interpretability of automated analysis systems and
help clinicians make informed, data-driven decisions during
labor.

B. Gaussian Process

A Gaussian Process (GP) is a powerful non-parametric
Bayesian model used for regression, classification, and
anomaly detection. It provides a probabilistic framework for
modeling complex functions while incorporating uncertainty
estimates. Unlike traditional parametric models that assume
a fixed functional form, a GP defines a distribution over
functions, which allows for flexible adaptation to data. GPs
have been successfully applied in supervised and unsupervised
learning tasks [27], including FHR analysis [28]. A Gaussian
Process (GP) is a stochastic process in which any finite set of

random variables follows a joint Gaussian distribution. Given
an input x ∈ Rdx and an output y such that y = f(x),
a GP defines a prior over the function f(x) as f(x) ∼
GP(m(x), k(x,x′)), where m(x) is the mean function and
k(x,x′) is the covariance function (or kernel).

The choice of kernel k(x,x′) is crucial as it defines the
properties of the function space. A commonly used covariance
function is the Radial Basis Function (RBF) kernel, defined
as k(x,x′) = σ2

f exp
(
−∥x−x′∥2

2l2

)
, where σ2

f represents the
signal variance and l is the l is the length scale parameter that
controls how quickly the function varies with x.

Given noisy observations, we model the outputs as y =
f(X) + ϵ, where the noise term is distributed as ϵ ∼
N (0, σ2

ϵI), y ∈ RN×1, with N being the number of ob-
served data, X ∈ RN×dx , σ2

ϵ is the noise variance, and
the prior distribution over function values follows: f(X) ∼
N
(
m(X),K(X,X)

)
. By conditioning the joint Gaussian

distribution, we obtain the predictive posterior distribution
for new inputs X∗, given the training data (X,y), as f∗ |
X,y,X∗ ∼ N (µ∗,Σ∗), where µ∗ and Σ∗ are the predictive
mean and covariance, respectively.

Thus, GPs provide predictions and estimate the uncertainty
of the made predictions, which is particularly useful for
applications that require confidence quantification. Although
GPs are computationally expensive due to their O(n3) time
and O(n2) memory complexity [29], various approximation
techniques have been developed to make them suitable for
real-time applications. Methods such as sparse GPs [30] and
online or streaming variants [31], [32] significantly reduce
computational demands while retaining the core advantages
of GPs, including probabilistic interpretability and uncertainty
quantification [27].

C. Automatic Relevance Determination (ARD) Kernel

The ARD kernel extends the standard RBF kernel by
assigning a separate length-scale parameter ld to each input
dimension d, which allows automatic feature relevance selec-
tion. The ARD kernel is given by [33]:

kARD(x,x
′) = σ2

f exp

(
−1

2

dx∑
d=1

(xd − x′
d)

2

l2d

)
(1)

where σ2
f is the signal variance that controls the output

scale, and ld is the characteristic length-scale for each input
dimension d. The characteristic length-scale determines how
quickly the function values change along that dimension.

The ARD kernel allows the model to identify the most
relevant input features, and it assigns larger length scales to
less relevant dimensions and smaller length scales to more
important ones. The GP model involves key hyperparameters
that require tuning, and they are the length-scales ( ld ) in the
ARD kernel, the signal variance (σ2

f ), and the noise variance
(σ2

n). These hyperparameters are optimized by maximizing the
log marginal likelihood.
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D. Gaussian Processes for Anomaly Detection

The one-class GP (OCGP) is an extension of GPs for
anomaly detection, where the model is trained exclusively on
data from a single class and identifies deviations as anomalies
[27], [28]. The key idea in OCGP is to model a probability
distribution over function values that represent the training
class. The function f(x) is a latent variable that defines the
decision boundary [26]. Anomaly detection can be achieved
by assessing the predictive variance of the model. Let σ2(x∗)
denote the predictive variance for a test input x, and let T be a
threshold. Then, we can define an anomaly detection function
δ(x) as

δ(x) =

{
1, if σ2(x) < T,

0, otherwise,
(2)

where δ(x) = 0 indicates that the test sample is flagged
as an anomaly [27]. The advantages of using the OCGP
model are numerous: first, its probabilistic interpretation sets
it apart from other one-class classifiers, such as the One-
Class SVM, because OCGP provides uncertainty estimates
that are particularly valuable in medical applications [19].
In addition, as a non-parametric model, OCGP does not
assume a fixed functional form, which allows for the flexible
modeling of complex normal data distributions. OCGP can
detect deviations from normal FHR patterns as potential fetal
distress indicators and provides continuous HCS for clinicians
to assess fetal well-being.

III. THE PROPOSED METHOD

This section describes the dataset, features, OCGP model,
detection threshold, and HCS.

A. Data Description and Preprocessing

An open-access intrapartum CTG database, compiled from
recordings collected between January 2018 and December
2020 at Stony Brook University Hospital in New York, con-
tains CTG recordings from 10,314 pregnant women and serves
as the basis for all experiments conducted in this study [34]. A
subset of FHR signals was selected from the database based on
the criterion that no more than 50% of values were missing in
the last 30 minutes before birth. The missing values in the se-
lected signals were linearly interpolated to ensure data continu-
ity. Each signal was then segmented into three nonoverlapping
10-minute segments. These segments were randomly presented
to an expert to label as healthy or unhealthy without providing
additional information about the newborn or maternal status.
The expert was blinded to the source of each segment and
unaware of any relationships between segments of the same
signal, which ensured an unbiased labeling process. The labels
provided by the expert were used as the ground truth. We
extracted 23 interpretable features from the FHR segments that
capture various characteristics. Time-domain features include
the estimated baseline, counts and durations of accelerations
and decelerations, as well as central tendency and variability
metrics (mean, median, standard deviation, minimum, maxi-
mum, range and root mean square of successive differences).

We computed the dominant frequency and power in the low-
and high-frequency bands and their ratio in the frequency
domain. Nonlinear measures such as approximate entropy,
sample entropy, and detrended fluctuation analysis (DFA) were
calculated to capture signal complexity. In addition, statistical
dispersion metrics like variance, interquartile range, and the
25th and 75th percentiles were also derived. Together, these
features provide a robust, multi-dimensional representation of
the FHR signal.

B. One Class Gaussian Process (OCGP) Model

Extracted features from healthy segments were used as
model inputs, with all training output labels uniformly set
to 1 to represent the healthy class. The ARD kernel was
selected to allow feature-wise weighting to allow for improved
interpretability after assessing the relative importance of each
feature. The Python GPyTorch library was used to implement
the model. The OCGP model learns a probabilistic represen-
tation of healthy FHR dynamics by training exclusively on
healthy segments. Gamma distribution priors were also applied
to the length scale and output scale parameters of the ARD
kernel to enforce regularization, while a Gaussian prior was
set on the mean function. The model was optimized by max-
imizing the Exact Marginal Log-Likelihood using the Adam
optimizer, with a Step Learning Rate Scheduler that ensures
stable convergence [35]. This probabilistic framework supports
confidence-based anomaly detection, where deviations from
the healthy FHR distribution indicate potential fetal distress.

C. Outlier Threshold and Confidence Score

The choice of threshold T significantly affects the sensitivity
and specificity of the detector. To derive a robust anomaly
detection threshold, we applied 5-fold cross-validation on
the training set, evaluating predictive variance distributions
across folds. The threshold that best balanced sensitivity and
specificity corresponded to the 95th percentile of training
variances, effectively minimizing false positives while reli-
ably flagging segments with elevated uncertainty indicative
of potential fetal distress. The HCS quantifies how similar
a segment’s features are to those in the healthy training set,
as learned by the GP model. It provides a continuous score
between 0 and 1, where values near 1 correspond to low
predictive variance (indicating the model’s high confidence
that the segment resembles healthy patterns), and lower values
indicate increased uncertainty and possible deviation from the
healthy distribution, which suggests potential anomalies.

We define the health confidence score (HCS) as follows:

HCS = 1− σ2(x∗)− σ2
min

max{σ2
max, σ

2(x∗)} − σ2
min

, (3)

where

σ2
max = max

x∈D
σ2(x), σ2

min = min
x∈D

σ2(x),

σ2(x∗) is the predictive variance at the new input x∗, D
denotes the training set, and maxx∈D σ2(x), minx∈D σ2(x)
are the maximum and minimum predictive variance observed
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over the training data, respectively. Thus, a lower predictive
variance (i.e., higher model confidence) corresponds to a
higher score. Scaling the confidence score between 0 and 1
improves the interpretability of fetal health status. This allows
clinicians to distinguish more clearly between normal and
potentially concerning patterns.

IV. EXPERIMENTS AND MODEL EVALUATION

In this section, we evaluate the performance of the OCGP
model on a test set and demonstrate the utility of the contin-
uous HCS in fetal health assessment.

A. Outlier Detection on a Test Set

A test set containing a mix of previously unseen healthy
and unhealthy 10-minute nonoverlapping segments was used
to evaluate the model’s performance. The same feature ex-
traction process applied during training transformed these
test segments into model inputs for the OCGP model. The
expert-labeled test set included 14 segments for each group
(healthy, unhealthy), which provided a balanced test set.
The classification results of the OCGP and one-class SVM
models are presented in Table I. One-class SVM, a widely
used method for anomaly detection, was originally introduced
by Schölkopf et al. [36]. The OCGP model demonstrates
superior performance in distinguishing between healthy and
unhealthy FHR segments. It achieved an overall accuracy of
96%, with precision, recall, and F1-scores indicating balanced
classification across both classes. Figure 1 presents a scatter
plot of predictive variance for the test set. Each point is
a 10-minute nonoverlapping segment of FHR. The dashed
line denotes the anomaly detection threshold, set at the 95th
percentile of the training variance. Test points with a variance
above this threshold are classified as unhealthy (anomalies),
whereas segments below the threshold are considered healthy
(normal).

TABLE I: Classification Results of the OCGP and One-Class
SVM Models

Precision Recall F1-Score Support
OCGP
Healthy 0.93 1.00 0.97 14
Unhealthy 1.00 0.93 0.96 14
Average 0.97 0.96 0.96 28
Accuracy 0.96 (28 samples)
One-Class SVM
Healthy 0.88 1.00 0.93 14
Unhealthy 1.00 0.86 0.92 14
Average 0.94 0.93 0.93 28
Accuracy 0.93 (28 samples)

B. Monitoring FHR with Health Confidence Score

A 30-minute FHR signal that satisfied the criterion was used
to monitor the HCS. The signal was segmented into 10-minute
segments, with each consecutive segment shifting by only one
second (four samples at a 4 Hz sampling rate). This allows for
smooth temporal tracking. For each segment, relevant features
were extracted and fed into the OCGP model. Monitoring

Fig. 1: Predictive variance for test points

how these features evolve over time closely mirrors the visual
assessment of clinicians when evaluating FHR patterns. The
predictive variance was transformed into the health confidence
measure using equation 3. Figure 2 illustrates a 30-minute
FHR signal alongside its corresponding HCS during labor.
This visualization demonstrates the model’s ability to capture
rapid, dynamic changes in fetal health due to its high tem-
poral resolution. The HCS drops sharply when the segment
transitions from a healthy state to a more concerning one.
This reflects the model’s sensitivity to shifts in the underlying
physiological state.

When two obstetricians annotated segments of the FHR
signal they found concerning, the HCS decreased accordingly,
suggesting that the model reliably captures clinically relevant
patterns. Figure 3 shows an example FHR signal with the
expert-identified regions highlighted in yellow and green.

Fig. 2: Fetal Heart Rate and Health Confidence Score

V. CONCLUSION

This study presents an OCGP model for FHR monitoring
that leverages machine learning for confidence-based anomaly
detection. Trained exclusively on healthy data, the model
detects deviations as potential signs of fetal distress and
introduces the Health Confidence Score (HCS) as a proxy for
fetal well-being. While initial results are promising, further
validation with a larger test set and broader expert input is
underway. Future work will incorporate uterine contraction
signals and additional clinical insights to enhance model
robustness.
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Fig. 3: Health Confidence Score and Expert’s Concern
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