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Abstract—Measuring perfusion parameters is crucial for con-
tinuous cardiovascular monitoring and early detection of hemo-
dynamic instability. Traditional methods for estimating aortic
pressure often rely on invasive procedures, limiting their ap-
plicability in real-time, non-invasive monitoring scenarios. This
work presents a novel data-driven approach for reconstructing
the aortic pressure curve (APC) using electrical impedance
tomography (EIT) measurements. Therefore, a reconstruction
model based on a variational autoencoder (VAE) and a deep
neural network (DNN) is designed and trained. Experimental
pig data is used for training, and an extensive hyperparameter
search is conducted. The provided results demonstrate that the
proposed approach can predict APCs, offering a promising non-
invasive alternative for cardiovascular monitoring.

Index Terms—EIT, Data-Driven, Aortic Pressure Estimation

I. INTRODUCTION

Electrical impedance tomography (EIT) is an imaging tech-
nique commonly used to determine the spatial impedance
distribution within an area of interest [1]. Therefore, surface
electrodes are attached to a subject, and low alternating
electrical currents are injected through selected electrode
combinations. The voltages can be measured between the
non-injecting remaining boundary electrodes. Depending on
the cross-sectional conductivity distribution, the current flow
affects the voltages measured at the surface electrodes [2]. The
voltage measurements can be reconstructed to an image of
the cross-sectional conductivity distribution by solving the ill-
posed, nonlinear inverse EIT problem [2]. The reconstructed
images provide valuable insights into the internal structure of
the object [1], [2].

EIT has found significant application in medical imaging,
particularly in monitoring lung ventilation and diagnosing lung
diseases [3], [4]. Here, the electrode belt is attached to the
thorax of the human body [5]. Additionally, EIT is non-
invasive and radiation-free, and its portability makes it an ideal
candidate for bedside applications, especially in Intensive Care
Units (ICUs) [6]. The technique has been shown to effectively
detect both physiological and pathophysiological changes in
regional pulmonary ventilation, making it particularly valuable
for monitoring patients with respiratory disease [6]. EIT has
already been used for pulmonary perfusion [7], [8], and also
cardiac output and stroke volume measurements [9]. It also
enables pressure monitoring in the aorta [10], [11], which is

ISBN: 978-9-46-459362-4

1607

crucial for assessing hemodynamic stability and guiding fluid
management. Additionally, the course of aortic pressure over a
cardiac cycle provides hemodynamic information supporting
disease monitoring and targeting. In clinical practice, aortic
pressure is mainly measured by invasive catheters or other
non-invasive methods like sphygmomanometry, which require
calibration and intensive training or show inaccuracies. There-
fore, the demand for non-invasive measurement tools remains
[12]. The challenges of using EIT, for example, as an imaging
technique in the medical field, are related to the ill-posedness
and nonlinearity of the inverse problem. Furthermore, mapping
EIT signals to the aortic pressure curve (APC) is difficult
due to the complex relationship between impedance changes
and hemodynamic parameters, as well as the influence of
surrounding tissues and motion artifacts on the signal.

The ill-posed nonlinear inverse EIT problem is addressed
using a combination of a variational autoencoder (VAE) and
a mapper to reconstruct the aortic blood pressure curve.
The VAE model leverages the advantage of learning a low-
dimensional manifold of approximate solutions, effectively
transforming the ill-posed problem into a well-posed one
[13]. The mapper predicts the low-dimensional representation
for the final reconstruction of the APC. Full model code is
available [14].

II. METHODS

A. Reconstruction network architecture

The proposed reconstruction network for the prediction of
the APC from EIT measurements is shown in Fig. 1.
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Fig. 1. Network architecture of the proposed network for reconstructing the
APC from EIT measurements, consisting of a mapper and the decoder part
of a VAE.

It is created based on two consecutive trained networks.
First, a VAE is trained unsupervised to learn a low-dimensional
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representation of the APC. Second, a mapper is trained su-
pervised using the EIT measurements with the corresponding
low-dimensional representation of the APC. The final recon-
struction model is created in the third step to predict the APC
from the underlying EIT measurements.

1) Variational autoencoder: VAEs have become a promi-
nent method for unsupervised feature extraction, dimensional-
ity reduction, and generative modelling, demonstrating strong
efficacy across diverse applications [15]-[17]. In this approach,
the VAE is used to learn a low-dimensional representation, also
called a latent representation, of the APCs by maximizing the
marginal logarithmic likelihood of the provided training data
[18]. This process is based on autoencoding, which transforms
high-dimensional data into a lower-dimensional representation
that can approximate the original observations [18]. The VAE
combines Bayesian methods with the flexibility of artificial
neural networks, facilitating dimensionality reduction while
allowing reconstruction of the data from its low-dimensional
latent representation [17].

The VAE model includes two main network components.
An encoder ®, which maps the input data Y to a latent vector
z, and a decoder ¥, which reconstructs the output Y from Z,
cf. Fig. 2.
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Fig. 2. VAE for learning a latent representation of the APC. Preprocessed
pressure curve segments are encoded into a low-dimensional latent space,
which the decoder reconstructs by minimizing the error between input and
output during training.
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An important feature of the used VAE is the inclusion of
the 0 parameter in the loss function
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that is minimized during training [13]. This parameter shapes
the latent space by imposing a prior Gaussian distribution,
which controls the distribution of latent representations and
thus contributes to a more structured latent space [17], [19].
This is achieved by minimizing the Kullback-Leibler (KL)
divergence Dy, a measure of statistical distance between
qo(z]Y) and pg(z), thereby optimizing the match between
the two distributions [17], [20]. A 8 > 1 imposes stronger
constraints on the posterior g¢(z|Y), and the regularization
is strengthened, leading to a more structured latent space
at the potential cost of reconstruction quality [17], [19].
Conversely, if § < 1, the regularization is down-weighted,
which can improve the reconstruction quality but may result

in a less structured latent space. During the implementation
and hyperparameter tuning in II-D of the VAE, the challenge is
finding a balance between the reconstruction and regularization
terms [17].

2) Mapper: The mapper =, composed of convolutional
neural network (CNN) layers and a deep neural network
(DNN) output layer, is trained supervised to learn a con-
nection between the EIT measurement X and the latent
space z = ®(Y) provided by the VAE encoder part. The
mapper has the advantage of learning a compact encoding
rather than attempting the direct reconstruction [13]. The exact
layer configuration and parameters are determined during the
hyperparameter tuning, described in II-D.

B. Instrumentation and recording of animal data

The data utilized for model training were collected in a
previous study investigating drug-induced pulmonary hyper-
tension [21], [22]. The experimental protocol involved ten
German Landrace pigs, aged 12 to 16 weeks, which were
anesthetized and instrumented for the study. For EIT data
acquisition, an elastic, custom-made EIT belt equipped with
32 electrodes was placed around the thorax of each animal,
centered at the level of the heart. To acquire the pressure
data, the pigs were equipped with different catheter types.
X-ray was employed to confirm the correct placement of
both the catheters and the EIT belt. A high-sensitivity pres-
sure sensor catheter (Mikro—Tip® SPR-350, Millar Instruments
Inc., Houston, TX, USA), measuring 5 Charriere (Ch), was
placed via the left femoral artery to monitor pressure in the
descending aorta. This catheter is hereinafter referred to as
the "MEMS catheter”. Additionally, a 4 Ch 16 cm PiCCO®
catheter (Getinge AB, Gothenburg, Sweden) or an equivalent
arterial line was inserted through the right carotid artery to
measure pressure in the descending aorta. This catheter is
hereinafter referred to as the “fluid catheter”.

EIT data were recorded at a rate of 47.68 Hz using
the Swisstom EIT Pioneer Set (Swisstom AG, EIT branch,
Landquart, Switzerland). Concurrently, catheter-based mea-
surements were collected at a sampling rate of 1kHz using
the ADInstruments PowerLab 16/35 system (ADInstruments,
Dunedin, New Zealand). The original study involved up to
nine distinct pulmonary arterial pressure states for each animal
[21], [22]. Each of these distinct pulmonary arterial pressure
states is called a “’block”. More detailed information about
sedation, anesthesia, preparation, and catheterization of the
animal model can be found in [21].

The study was approved by the governmental ethical board
for animal research (Landesamt fiir Landwirtschaft, Lebens-
mittelsicherheit und Fischerei, Mecklenburg-Vorpommern,
Germany; No: 7221.3-1-037) and was carried out under the
EU-directive 2010/63/EU and the Animal Research: Reporting
of In Vivo Experiments guidelines 2.0 (ARRIVE 2.0).

C. Data processing

Data processing aims to create a data set consisting of
samples containing EIT measurements aligned with their cor-
responding APCs. A primary challenge is to segment the EIT
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and LabChart measurements into correctly coupled frames. A
single frame is defined as a complete APC corresponding to
one heartbeat, along with the EIT measurements taken during
that time. Samples differ from frames in that they contain
preprocessed frame data. The variability of heart rates and the
absence of synchronization during data acquisition necessitate
preprocessing and quality checks to ensure the accuracy and
consistency of the samples.

1) Synchronization: During data recording, an external
manual trigger by the Pioneer Set was used to synchronize EIT
measurements with ADInstruments PowerLab data, generating
synchronization pulses recorded on a dedicated PowerLab
channel. Inconsistencies in the initial timestamps required
an alignment by identifying synchronization marks in both
the EIT and the LabChart data sets. Furthermore, due to
the animals’ underlying vital conditions, experiments were
re-enacted, and not all EIT files were retained, leading to
mismatches in synchronization markers. Consequently, some
synchronization pulses were absent in the EIT recordings. To
address this, individual synchronization was performed for
each EIT measurement. The first dimension of the EIT frame is
constant. It corresponds to the number of electrodes (L = 32)
attached to the pigs during the measurement, resulting in a
constant dimension of L2 = 1024 for all possible electrode
injection combinations. The second dimension of the EIT
frame corresponds to the length of the temporal EIT data
sequence recorded during a single heartbeat. Temporal drift
issues were mitigated using a synchronization protocol that
included an initial pulse marking the start of the EIT recording,
a final pulse indicating the end, and a sample-by-sample timing
TecovVery process.

2) Catheter calibration: The aortic pressure signals were
measured from two arterial catheters: fluid-filled and MEMS-
based. The fluid-filled catheter provided stable measurements
but was affected by fluid resonance effects [23]. The MEMS
catheter delivered artifact-free pressure curves but exhibited
drift over time. To address this drift, a recalibration procedure
was implemented using the fluid catheter as a reference,
assuming a consistent drift within each EIT measurement. The
process involved three steps: temporal alignment, filtering, and
robust mean estimation. The temporal alignment using cross-
correlation corrected for minor placement differences between
the catheters, accounting for pulse wave velocity variations
[24]. A median filter (100ms) was applied to both signals
to suppress fluid resonance effects. Following this, a robust
mean estimation was conducted to handle potential artifacts
caused by the movement of subjects or other interference. A
robust M-estimator using Tukey’s weight method was used to
suppress outliers and iteratively adjust the drift estimate.

3) Segmentation: A segmentation approach in the fre-
quency domain was employed without EIT image recon-
struction for heartbeat-by-heartbeat estimation of the APC
from EIT data. The method utilized the Fourier-based Syn-
chrosqueezing Transform (SST) [25] to extract individual
heartbeat intervals from the mixed EIT signals. This transform
represented the input signal as a combination of multiple

components and mapped it onto the time-frequency plane,
enhancing the detection of dominant frequency components
corresponding to heartbeats [25].

The SST method remaps the short-time Fourier transform
coefficients to obtain a refined representation of local instanta-
neous frequencies. This allowed for precise tracking of heart
rate changes even under non-stationary conditions. Potential
issues, such as misdetection due to abrupt rate changes, were
mitigated by applying a low-pass filter to stabilize frequency
estimates.

The resulting spectrogram’s instantaneous frequency rep-
resenting the heart rate was iteratively extracted using a
local search algorithm. Typically, three to five iterations were
sufficient for a stable estimation from the MEMS catheter
signal. The phase information was subsequently derived, en-
abling the identification of individual heartbeats through zero-
crossing detection of the estimated phase signal. This approach
facilitated accurate temporal segmentation of EIT data, align-
ing each extracted interval with corresponding heartbeats for
further analysis.

4) Segment post processing: Particularly at low APCs,
occasional extrasystoles were observed in the data set. Ex-
trasystoles are characterized by a distinct pattern: a lower
aortic pressure variation followed by a larger variation in the
subsequent cycle. For each measurement channel, the mean
and maximum signals were compiled into matrices, and their
first derivatives were calculated to detect abrupt changes while
minimizing drift influence. Thresholds were established based
on deviations from the average signal amplitude to identify
outliers. Using these thresholds, extrasystoles and their subse-
quent beats were flagged as outliers. These identified segments
were excluded from the data set to ensure the focus remained
on regular heartbeats.

During data processing, segments in the EIT recordings
appeared affected by external influences such as poor electrode
contacts or measurement noise. A single electrode affects
124 of the 1024 channels, highlighting the impact on the
data. To address this issue, an additional quality check was
implemented. This check was structured to first roughly pre-
sort possible corrupt segments, extend individual segments to
consecutive segment sections, and separate corrupt segments
from valid ones. The identified faulted EIT segments were
removed from the data set along with their corresponding APC
segments to ensure the quality of the data pool.

5) Training data preparation: The final preprocessing step
was resampling and normalization of the data. The resampling
was necessary to adapt the data shape to the shape of the
input and output layers of the utilized reconstruction networks.
The EIT data was resampled along the time dimension. This
dimension has an inconsistent length due to the previously
applied segmentation. All EIT frames were resampled to a
constant shape of x € R64*1924_ The temporal EIT dimension
value of 64 was chosen as the closest power of two that
exceeded the maximum length value of the data set along this
axis, which was 41. The APC frames were resampled to a
constant length of y € R'024X1 chosen as the closest power
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of two that exceeded the maximum length value of the aortic
pressure segments, which was precisely 1024.

Furthermore, a block-wise z-score normalization of the
EIT data was conducted. APC segments were normalized by
subtracting 85 and dividing by 20 for each sample. These
values were chosen heuristically by manually evaluating a
histogram of the amplitude distribution of all APC segments.
This normalization can be easily inverted for later evaluation of
the test data to obtain the original range of values. The prepro-
cessed EIT data is described by X = {x1,x2,--+ ,xx} and
the preprocessed APC is described by Y = {y1,y2, - , ¥~}
The final data set consists of the whole preprocessed data
samples of ten pigs and is described by {X,Y})_,.

D. Training and hyperparameter tuning

All data samples from pig one to pig nine are used for
training and validation, which results in N = 73 536 samples.
The training set consists of 80 % randomly selected samples,
and the validation set consists of the remaining 20% of
this data subset. Pig ten is used as test data to evaluate
the robustness of the network architecture on an unknown
individual. If the trained model generalizes well, it will be able
to predict APCs from EIT measurements even for unknown
individual pigs, such as pig ten.

First, the VAE is trained on the prepared aortic segments
{Y}. In the second step, the mapper is trained with the EIT
data and the corresponding latent representation, created by
the VAE z = ®(Y), which results in a supervised training
set {X,z}. Both networks are created with Tensorflow and
tuned with the grid search in Kerastuner. During this tuning
process, the number of layers, kernel size, filter size, strides,
padding, dropout, activation, and other network parameters are
evaluated systematically. The VAE and the mapper networks
are re-initialized and trained based on the best parameters
obtained from the hyperparameter tuning. The final network
architectures of the VAE and the mapper are documented in
[14].

III. RESULTS

Fig. 3 visualizes a temporal sequence of nine reconstructed
APCs from unknown EIT measurements of pig ten. It can be
seen that the shape of the APC can be reconstructed success-
fully by the trained model. It should also be mentioned that
any temporal correlations were excluded by random shuffling
of the training data. Furthermore, the model created is also
sensitive to the reconstruction of the pig’s respiratory function,
as can be seen from the increasing tendency of the amplitude
of the predicted heartbeat segments compared to the known
heartbeat segments. From Fig. 3, it can be seen that the model
has successfully generalized and can predict the APCs from
the EIT measurements of the unknown individual pig.

Some statistics are computed for the full test data set to
obtain a more general performance evaluation. Fig. 4 illus-
trates the absolute value of the relative error profiles for two
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Fig. 3. Predictions of the APC by the final trained reconstruction model with
the corresponding actual APC for nine consecutive EIT measurements of the
test pig.

statistical measures. Therefore the error matrix E is computed
element-wise as

Ypred - erue

E=
Ytrue

2

where Y and Yeq are matrices structured such that their
rows contain the APCs, while the number of rows represents
the number of test data of the true and predicted APCs.
Furthermore, the mean error ug, and the standard deviation
0%, along the resampled aorta pressure curve index k of each
aorta segment are computed.
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Fig. 4. Error visualization of mean pg and standard deviation O'I% of the error
matrix E along the resampled aorta pressure curve index k.

The trend of the mean error curve indicates a systematic
offset in the reconstruction process. The standard deviation of
the error o is relatively high at the beginning, indicating
higher variability in the reconstruction errors in the initial
indices. This behavior suggests local inaccuracies that persist
consistently throughout the curve. The higher error values at
the beginning and end of a segment show that the boundaries
of the individual aortic curves are still a challenge for the
model. The systematic bias in the mean pg and the standard
deviation 0% suggests areas for improvement, particularly in
minimizing inaccuracies and correcting the bias trend.

It should be mentioned that the data set used for training
exhibits imbalance in two key aspects: the number of samples

per pig is inconsistent, and the distribution of samples is
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uneven across low and high APCs and very low and high
respiratory rates. As a result, the VAE does not learn all curve
properties with the exact weighting. One way of compensating
for the different numbers of samples per pig would be to
expand the data set using data augmentation techniques. In
addition, the inaccuracies of the VAE have to be mentioned
as an error propagation for the mapper’s training.

IV. CONCLUSION

Although more research is needed, the results can be inter-
preted as positive with potential. This approach can potentially
improve patient safety and the responsiveness of clinical inter-
ventions by providing continuous and reliable APC estimates
using EIT. Above all, the available data is key for expanding
and further testing this approach. To improve the robustness of
the models, more data from more individuals should be used
for training, and imbalances should be compensated.

Another challenge of this approach lies in the proper
amplitude scaling of the pressure curve and the right, well-
chosen normalization process. For future work, a challenge
remains in processing APCs and EIT measurements with-
out needing time-dimension resampling. Overcoming these
challenges is essential to advance the integration of these
technologies into robust, real-time monitoring systems for
clinical and ambulatory settings. Consistent with other results
in the literature, EIT also provides, in this case, the potential
for concurrent detection of regional changes due to ventilation
and perfusion, which could enhance the evaluation of lung
function in clinical settings [6]. To improve the accuracy of
this reconstruction approach in the future, a time series of
EIT measurements could be fed into the model to improve the
prediction accuracy using recurrent neural networks, such as
long short-term memories.
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