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Abstract—This study introduces a novel, computationally effi-
cient deep learning architecture for respiratory sound classifica-
tion, designed for real-world medical applications. We propose a
fully convolutional neural network that processes audio record-
ings of arbitrary length, ensuring flexibility in handling various
input sizes. The network is evaluated on two classification tasks
using the IEEE SPRSound Datasets of 2022 and 2023 Grand
Challenges, leveraging mel spectrograms feature representations.
Our architecture achieves high performance with a simple,
low-cost design, making it adaptable to different classification
formulations. The key innovation of our approach lies in bal-
ancing classification accuracy with minimal computational cost,
enabling deployment in resource-constrained environments. The
model demonstrates competitive performance compared to top-
ranked methods, with compatibility for optimized computing
environments, further enhancing efficiency and supporting its
practical use in respiratory disease diagnosis and monitoring in
clinical settings.

Index Terms—Respiratory sound classification, deep learning,
SPRSound dataset 2022 2023, BioCas challenge

I. INTRODUCTION

Respiratory sound classification is essential for diagnosing
and monitoring respiratory diseases by providing insights into
lung function and identifying abnormalities. At the Tenth
International Lung Sound Association (ILSA), respiratory
sounds were classified into normal and abnormal categories.
Abnormal sounds, such as crackles, wheezes, rhonchi, stridor,
and pleural friction rubs, offer critical diagnostic information,
with crackles, wheezes, and rhonchi being the most common.

Crackles, characterized by short, explosive, non-musical
sounds, often signal parenchymal lung diseases such as pneu-
monia and pulmonary edema. Wheezes, described as musical
high-pitched sounds, are commonly associated with airway
diseases like asthma and Chronic Obstructive Pulmonary
Disease. Rhonchi, resembling low-pitched snores, typically
indicate the presence of airway secretions and are often cleared
by coughing [1]. Adventitious sounds can be further classified
into continuous adventitious sounds (CAS), which include
rhonchi, wheezes, and stridor, and discontinuous adventitious
sounds (DAS), such as coarse crackles and fine crackles, based
on their duration [2].

Auscultation remains a valuable but variable diagnostic tool,
with clinician experience influencing its effectiveness. Recent
advancements in signal processing and machine learning have

facilitated the automated classification of respiratory sounds,
offering potential as a non-invasive assistive technology.

As reported in [3], significant efforts have been made
to classify respiratory diseases, but they lack the design of
a real-time hardware system that can automatically classify
diseases based on symptoms, while maintaining low power
consumption. Such a system is crucial for integration with
multiple devices for automatic diagnosis.

In order to overcome this constraint, the main objective of
our study is to formulate a simple deep learning architec-
ture with low computational cost that achieves state-of-the-
art classification results for respiratory sound classification.
By designing an architecture that balances performance with
computational efficiency, we seek to ensure that the model can
be deployed in resource-constrained environments and utilized
in real-time applications, ultimately enhancing the accessibil-
ity and reliability of respiratory health assessments. Several
publicly available datasets have significantly contributed to
advancements in respiratory sound analysis research. Notable
datasets include the ICBHI 2017 Challenge Database, which
focuses on detecting crackles and wheezes; the Pfizer21 2018
Database, containing samples of respiratory abnormalities such
as coughing and sneezing; the Stethoscope22 2021 Database,
which consists of lung sound recordings; and the HF Lung
V123 2021 Database, which provides respiratory recordings
along with demographic information. More recently, the IEEE
Grand Challenges on Respiratory Sound Classification intro-
duced the SPRSound Dataset [4]. Our study focuses on the
SPRSound 2022 and 2023 datasets, as they enable a direct
performance comparison with the top-performing challenge
methods using standardized evaluation metrics.

The IEEE challenge includes two tasks:
• Task 2-1 Ternary: A 3-class task for classifying res-

piratory sound records into the categories of “Normal”,
“Adventitious”, and “Poor Quality”.

• Task 2-2 Multi-class: A 5-class task for classifying
respiratory sound records into the categories of “Normal”,
“CAS”, “DAS”, “CAD & DAS”, and “Poor Quality”.

The top-rated method of the 2022 challenge [5] used a fixed-
length segmentation scheme, where spectrogram segments
were input into a ResNet-based classifier. The study introduced
two ResNet architectures: the original ResNet and a temporal
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convolutional TC-ResNet. During preprocessing, segmentation
and zero-padding were applied for audio samples shorter than
the specified length, with random time shift padding during
training and centered padding during testing. Any excess audio
beyond the specified length was removed during testing.

The top-rated method of the 2023 challenge, [6] applied
several preprocessing techniques, including pre-normalization
for scaling respiratory sounds on Mel frequency cepstrum
coefficients (MFCCs). They applied random flipping and
cropping. The processed spectrograms were fed into a pre-
trained supervised contrastive model and encoded into high-
dimensional embeddings.

In contrast, our novel approach eliminates the necessity for
segmentation schemes by considering each respiratory sound
recording in its entirety, treating it as a 2-D representation
(image) directly analyzed by a fully convolutional neural
network architecture. This enables our method to handle
sounds of arbitrary duration without requiring segmentation
as a preprocessing stage, thereby preserving the temporal
characteristics of the sounds and simplifying the analysis
pipeline. Our system not only offers a more straightforward
and comprehensive approach but also maintains performance
comparable to existing methods, while ensuring a low com-
putational cost.

The proposed architecture boasts a low computational cost
due to its minimal number of model parameters and weights.
Consequently, the architecture can be effectively executed on
standard GPU hardware, where execution time is remarkably
low. This efficiency is evidenced by our timing analysis,
which demonstrates that the model runs swiftly on a typical
GPU, making it an attractive option for resource-constrained
environments and real-time applications.

Through the following sections, we first review existing
research on respiratory sound classification in Section II. We
then present our method in Section III, describe the available
datasets, and explain our feature extraction, model design,
and training processes. Section IV presents the experimental
results, followed by the conclusions in Section V.

II. RELATED WORK

Recent literature indicates that frequency domain analysis
is particularly well-suited for the classification of respiratory
sounds. The spectral characterization of these sounds primarily
relies on MFCC coefficients [ [7], [8] ] and variations of
spectrograms [ [9], [10], [11], [12] ], which have been shown
to yield high classification accuracy.

The most notable advancements are associated with deep
learning techniques. More specifically, Razvadauskas et al. [8]
explored supervised models leveraging tree-based ensemble
methods. Cozzatti et al. [13] proposed a weakly supervised
approach based on a Variational Autoencoder. Shuvo et al.
[14] introduced a lightweight CNN architecture that operates
on features derived from empirical mode decomposition and
the continuous wavelet transform. Pham et al. [15] focused
on scalogram representations and CNNs. Ntalampiras et al.
[16] proposed a Siamese Neural Network framework while,

Bae et al. [11] introduced patch-mix contrastive learning
with an audio spectrogram transformer. Pessoa et al. [12]
proposed a dual-input deep learning architecture, leveraging
raw audio signals and STFT spectrograms. Lal et al. [17]
employed transfer learning with a VGGish-stacked BiGRU
model. Meanwhile, Yang et al. [18] introduced BLNet, which
integrated ResNet, GoogleNet, and self-attention mechanisms.
Kim et al. [1] explored the VGG architecture.

Since we experimented with the 2022 and 2023 IEEE
BioCas Grand Challenges data we focus on their top-rated
works. To be more detailed, Li et al. [5] proposed an ResNet-
based respiratory sound classification system with ResNet18
and TC-ResNet algorithms and achieved top scores, including
the best ternary and multi-class scores of 0.833 and 0.673.
Zhang et al. [19] introduced a feature-polymerized two-level
ensemble model while Ma et al. [20] proposed a DenseNet169
CNN model with optimized preprocessing methods, achieving
classification scores of 0.838 and 0.673 for the two tasks.
Chen et al. [21] compared the performance of different feature
extraction techniques, including STFT, Mel spectrograms, and
Wav2vec, and employed pre-trained ResNet18, LightCNN,
and audio spectrogram transformer algorithms, achieving no-
table harmonic scores of 0.71 and 0.36 for the two tasks. Babu
et al. [22] proposed a convolution-based deep learning model
using MFCCs, achieving a score of 0.876 and 0.515 for ternary
and multiclass tasks.

As far as the top three announced works for the 2023
challenges are concerned [6], [23], and [12] all contribute
with deep learning approaches. Hu et al. focus on addressing
class imbalance by applying supervised contrastive pretrain-
ing. They used MFCCs, pre-normalization, and spectrograms,
and applied a supervised contrastive model Their approach
achieved a ternary score of 0.8097 and a multiclass score of
0.6666. Ngo et al. excelled with spatio-temporal modeling,
using continuous wavelet transformation for feature extraction
and various data augmentation techniques, such as spectro-
gram oversampling, masking, and mixup. They employed
an inception-residual network with spatio-temporal focusing
and multi-head mechanisms, achieving a ternary score of
0.7693 and a multiclass score of 0.6318. Finally, Pessoa et al.
proposed a dual-input deep learning architecture, utilizing both
raw audio signals and STFT spectrograms, processed through
separate CNN blocks. This approach achieved a ternary score
of 0.756 and a multiclass score of 0.4666.

III. METHOD DESCRIPTION

A. DATASET DESCRIPTION

For our experiments, we utilised the SPRSound Open-
Source SJTU Pediatric Respiratory Sound Database [24],
which includes respiratory sounds from children aged 1 month
to 18 years, recorded at the Shanghai Children’s Medical
Center using a Yunting Model II stethoscope. The 2022 dataset
was partitioned into training and test sets. The training set
consists of 1, 949 records containing 6, 656 respiratory sound
events collected from 251 participants, while the test dataset
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Fig. 1. The network architecture, implemented as a fully convolutional neural network

comprises 356 records. The 2023 partition included a training
set of 1, 949 records and a testing set of 870 records.

B. FEATURE EXTRACTION PROCESS

At the first stage of the processing pipeline, a short-term
feature extraction method is employed to derive a sequence of
vectors of MFCCs from the input signal. The signal is first
amplitude-normalized and resampled to 44.1 kHz. At each
frame, the Discrete Fourier Transform (DFT) is computed, and
the DFT coefficients are fed into a mel filter bank. Each mel
filter implements a weighted sum of the magnitudes of the
DFT coefficients within its frequency range. The logarithm of
each filter bank output is then computed, followed by the DCT.
Only the first 13 MFCCs are retained. This results in a 2-D
representation (image) of the input segment, with dimensions
N × 13, where N varies depending on the duration of the
audio recording.

Additionally, we extract the mel spectrogram of each audio
signal. For the sake of consistency, all signals are again
amplitude-normalized and resampled at 44.1 kHz. Subse-
quently, the spectrogram is computed using a 1024-point DFT
and a periodic Hamming window with a duration of 40 ms
and a 25 ms overlap. The spectrogram is then passed through
a mel-scale filter bank of 32 filters, covering the frequency
range from 20 Hz to 20 kHz, i.e., the entire audible spectrum.
The resulting feature sequence is again represented as a 2-D
image with dimensions N×32, where N varies depending on
the duration of the audio recording.

C. NEURAL NETWORK ARCHITECTURE

The novelty of our approach lies in leveraging a network
architecture capable of handling audio recordings of arbitrary
duration. Unlike conventional methods, we refrain from uti-
lizing segmentation or zero-padding procedures. This choice
is dictated not only by the key features of our architecture
but also by our observations that segmentation schemes tend
to overlook important information regarding the temporal
evolution of audio features across the entire sample. This is
made possible by a fully convolutional neural network (see
[25] for a definition of fully convolutional architectures). The
key property of such neural network architectures is their
ability to adeptly process inputs of varying dimensions while
yielding an output vector of fixed dimensionality

In a standard convolutional classifier, a convolutional layer
is typically followed by a pooling layer, and this design pattern

is repeated several times. The feature maps from the last
convolutional block are then flattened and passed through
a cascade of fully connected layers to generate the final
prediction outcome, e.g., a classification decision. It therefore
follows that the input images must have a fixed size to ensure
a consistent number of inputs at the first dense layer of the
feed-forward part.

To overcome this limitation, we use fully convolutional
networks, a technique newly introduced for arbitrary-size
splitting augmentation in our previous work [26] and detailed
in [27].

In this method, the final convolutional block is replaced
with a block consisting of a convolutional layer with a kernel
size of 1 × 1 and a stride of 1, followed by a global max
pooling layer. The output dimensionality of this block remains
consistent, determined solely by the number of filters, denoted
as n, resulting in an output size of 1 × 1 × n. Notably, this
dimensionality remains invariant to changes in the input image
size and is subsequently forwarded to the fully connected layer.

In our method, we represent each audio recording as a
single-channel, two-dimensional ”image” with dimensions de-
fined by its height h and width w. When extracting MFCCs
features, this results in a matrix with N rows and 13 columns.
Similarly, for mel spectrogram representations, the matrix size
becomes N rows by 32 columns. In this methodology, N
signifies the number of frames extracted from the audio signal,
which depends on the recording’s duration. This consistency
applies to both MFCCs and mel spectrogram representations.
Typically, N ranges between 124 and 1462 frames, accom-
modating various durations commonly found in respiratory
sound recordings. As a consequence, the input shape of the
first convolutional layer does not have fixed dimensions, and
having adopted a batch size equal to one, the resulting batch
shape is 1 × N × 32 × 1. More specifically, as illustrated in
Figure 1, the proposed architecture consists of:

• Four consecutive convolutional layers. Each layer con-
tains 64, 64, 32, and 32 convolutional masks, respectively.
The first three have a kernel size of 3 × 3. The final
convolutional layer has a kernel size of 1 and is followed
by a global max pooling layer. The output of each
convolutional operation is processed through a Rectified
Linear Unit (ReLU) function, and the resulting feature
matrix is subsequently subsampled by a max pooling
layer with a size of 2 × 2. Each 52 × 32 input matrix
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TABLE I
TEST RESULTS FOR DIFFERENT FEATURE REPRESENTATIONS ON THE FIVE-CLASS AND THREE-CLASS TASKS.

Experimental results referring to 2022 SPRSound data
Task 2-1: Ternary-class classification

Input features Accuracy (%) Specificity Sensitivity Average score Harmonic score
MFCCs 0.76± 0.07 0.75± 0.05 0.91± 0.05 0.75± 0.06 0.75± 0.04
Mel Spectrogram 0.86± 0.04 0.84± 0.03 0.86± 0.03 0.86± 0.04 0.86± 0.02

Task 2-2: Multi-class classification
Input features Accuracy (%) Specificity Sensitivity Average score Harmonic score
MFCCs 0.575± 0.03 0.5± 0.05 0.90± 0.02 0.57± 0.03 0.57± 0.03
Mel Spectrogram 0.625± 0.05 0.62± 0.06 0.95± 0.04 0.62± 0.06 0.62± 0.05

Experimental results referring to 2023 SPRSound data
Task 2-1: Ternary-class classification

Input features Accuracy (%) Specificity Sensitivity Average score Harmonic score
MFCCs 0.61± 0.03 0.55± 0.04 0.83± 0.02 0.75± 0.03 0.75± 0.05
Mel Spectrogram 0.72± 0.02 0.69± 0.03 0.58± 0.04 0.68± 0.03 0.63± 0.03

Task 2-2: Multi-class classification
Input features Accuracy (%) Specificity Sensitivity Average score Harmonic score
MFCCs 0.66± 0.02 0.61± 0.03 0.72± 0.02 0.67± 0.02 0.65± 0.02
Mel Spectrogram 0.68± 0.01 0.72± 0.02 0.65± 0.03 0.68± 0.02 0.67± 0.02

produced by the preprocessing stage is passed through
the convolutional layers.

• Subsequently, the outputs of the global max pooling layer
are forwarded through a dense layer comprising 128
neurons with a ReLU activation function.

• Finally, a softmax layer with five outputs calculates the
final classification decision.

The above description refers to a five-class task. The config-
uration was modified to accommodate the three-class problem.
This modification only required changing the output layer to
use a softmax function with three outputs instead of five.

IV. EXPERIMENTS AND RESULTS

To assess the performance of the classifier, we conducted
experiments based on the metrics introduced by the challenges
to facilitate comparison with the top-ranked methods. There-
fore, we evaluated the performance in terms of sensitivity (SE),
specificity (SP), average score (AS), and harmonic score (HS).
We aimed to assess the performance of two audio features
to determine the most effective one. Building on previous
research, we evaluated our neural network architecture using
MFCCs and the mel spectrogram across both classification
tasks.

The proposed classifier was trained for 500 epochs using
the Adam gradient descent algorithm and a fixed learning rate
of 0.0001 to optimize the standard cross-entropy loss func-
tion. The training process followed a 3-fold cross-validation
scheme. As is standard practice, an early stopping criterion
was adopted and a dropout regularization scheme of 0.5 was
applied to the convolutional layers.

We experimented with the two tasks under study: the ternary
classification task (Task 2-1) and the five-class classification
task (Task 2-2). The results are summarized in Table ?? and
indicate competitive performance for both feature representa-
tions on both datasets.

More specifically, for ternary classification on the 2022
dataset, the model demonstrates competitive performance for
both feature representations. The MFCCs-based approach
achieved an accuracy of 0.76 ± 0.07, with a sensitivity of
0.91 ± 0.05 and a specificity of 0.75 ± 0.05. Similarly, the
mel spectrogram representation yielded a higher accuracy of
0.86±0.04, with comparable sensitivity and specificity values
of 0.86± 0.03 and 0.84± 0.03, highlighting its effectiveness
for the classification task.

In the case of multi-class classification, performance was
evaluated in a similar manner. As shown in Table ??, the
MFCCs-based approach achieved an accuracy of 0.575±0.03,
with a sensitivity of 0.90±0.02 and a specificity of 0.50±0.05.
The mel spectrogram representation outperformed MFCCs,
achieving an accuracy of 0.625 ± 0.05 and demonstrating
improved sensitivity (0.95±0.04) and specificity (0.62±0.06)
scores.

Focusing on the 2023 data, for ternary classification, the
MFCCs-based scheme achieved an accuracy of 0.61 ± 0.03,
with a sensitivity of 0.83±0.02 and a specificity of 0.55±0.04.
The mel spectrogram approach performed better, reaching an
accuracy of 0.72±0.02, with balanced sensitivity (0.58±0.04)
and specificity (0.69± 0.03) values.

Regarding multi-class classification, MFCCs obtained an
accuracy of 0.66 ± 0.02, with a sensitivity of 0.72 ± 0.02
and a specificity of 0.61 ± 0.03. Meanwhile, the mel spec-
trogram representation further improved classification perfor-
mance, achieving an accuracy of 0.68± 0.01, with sensitivity
(0.65± 0.03) and specificity (0.72± 0.02) values.

Our experimentation with GPU acceleration, specifically
leveraging TikTok, demonstrated notable enhancements in the
computational efficiency of the task. The device utilized had
the following properties: pciBusID:0000 : 21 : 00.0, name:
NVIDIA GeForce RTX 2080 Ti, compute capability: 7.5,
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core clock: 1.545GHz, core count: 68, device memory size:
10.76GiB, and device memory bandwidth: 573.69 GiB/s. The
evaluation time for the 2022 and 2023 testing datasets was
measured at 31, 569.88 ms and 59, 012.28 ms, respectively.
Notably, the model comprises a small number of parameters:
29, 006 in total, with 28, 622 trainable and 384 non-trainable
parameters.

These results highlight that a fully convolutional network
processing audio recordings at arbitrary sizes without prepro-
cessing can effectively operate in the task of respiratory sound
classification. While both MFCCs and the mel spectrogram
exhibit satisfactory performance, the mel spectrogram outper-
forms.

V. CONCLUSIONS

Our experimental study indicates that processing recordings
at their original duration, without segmentation, presents a
viable approach to addressing the complex challenge of res-
piratory sound classification. Specifically, we demonstrate the
effectiveness of employing mel spectrogram representations
of audio signals within a fully convolutional neural network
architecture, establishing a competitive method within the
IEEE BioCAS challenge framework. These findings under-
score the potential of leveraging full-length recordings and
optimized feature representations to enhance respiratory sound
classification, contributing to the development of more ac-
curate diagnostic and monitoring tools in respiratory health.
Our future plans include refining our proposed architecture
and expanding our experiments to all available respiratory
databases.
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