Mitigating False Positives in ECG Segmentation
Through Deep Learning-based Postprocessing
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Abstract—The characteristics of P, QRS, and T ECG waves,
as well as the intervals and segments between them, are crucial
for the diagnosis of cardiac diseases. However, automatic ECG
signal segmentation methods suffer from the False Positives
(FP) issue caused by either those isolated artifacts that are
mistakenly detected as events of interest or artifacts that hide
target events of interest. In this paper, a shallow Deep Learning
(DL)-based postprocessing stage is proposed to mitigate FP in ECG
segmentation. The effectiveness of the proposed postprocessing
stage is evaluated by applying it to a recent supervised approach,
namely ConvLSTM, and two well-known unsupervised methods,
namely ECGdeli and ECGKit, using the popular QT and
LU databases of PhysioNet. The results obtained confirm the
effectiveness of the proposed postprocessing in reducing the False
Detection Rate (FDR). In addition, for a comprehensive analysis of
segmentation quality, an additional evaluation criterion addressing
the number of false detected waves is also suggested. The current
study demonstrates the relevance of combining ECG segmentation
approaches, especially supervised ones, with the proposed shallow
DL-based postprocessing stage, in terms of both the accuracy
and the number of detected waves.

Index Terms—Electrocardiography; ECG segmentation; False
detection rate

I. INTRODUCTION

Accurate segmentation of different ECG waves (P, QRS
and T) and wave intervals and segments (PR, QT, ST, etc)
is mandatory; Since these features are commonly used by
clinicians to determine cardiac abnormalities and are crucial
for diagnosing cardiac pathologies or predicting adverse events
[1]. Although many methods have been proposed to segment
the ECG signal, this task remains challenging as the ECG
signal is subject to various noise types that can drastically
distort its waveform, making it difficult to identify these
ECG waves and hence leading to a high FP segmentation
rate. ECG segmentation methods can be classified into two
main categories: unsupervised and supervised. Unsupervised
approaches encompass techniques such as the Pan-Tompkins
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algorithm [2], Wavelet Transform (WT) [3], [4], Fourier
Transform (FT) [5], and Empirical Mode Decomposition
(EMD) [6], among others. Among supervised approaches,
Deep Learning (DL) has been extensively applied to the
automatic segmentation of ECG signals. For example, in [7],
the authors introduced ECG-SegNet, a novel segmentation
method based on two layers of bidirectional Long Short-Term
Memory (LSTM). Malali et al. [8] proposed a Convolutional
LSTM (ConvLSTM) model, which combines the capabilities
of convolutional Neural Networks (CNNs) and bidirectional
LSTMs, along with a Self-Attention (SA) layer, leading to the
ConvLSTMgs model. In this study, the authors compared the
latter model with the Hidden Markov Model (HMM) [9] and
ECG-SegNet [7], demonstrating that ConvLSTMg, achieved
superior performance.

Although these ECG segmentation methods have demon-
strated promising accuracy, they consider the segmentation task
as a binary classification problem for each ECG time sample,
without accounting for the total number of segmented waves
(P, QRS, and T). As a result, high classification accuracy
can be achieved at the time sample level, while a high
FDR is expected for the number of these segmented waves.
Furthermore, in low SNR conditions, isolated artifacts are
likely to occur. These artifacts can obscure the onset and
offset of each ECG wave, leading unsupervised approaches
to generally underdetect these critical time points accurately.
Regarding supervised approaches, typical DL-based ones, they
generally tend to overdetect ECG waves. To address the
aforementioned issues, this paper makes two key contributions:
(i) the introduction of a shallow DL-based postprocessing
stage that combines CNNs and BiLSTM models, which can
be integrated with both unsupervised and supervised ECG
segmentation methods, and (ii) the suggestion to consider the
number of detected waves as an additional evaluation criterion
alongside segmentation accuracy, ensuring a more reliable
assessment of segmentation quality. In this study, the impact
of the proposed postprocessing on the ECG segmentation of
two classical unsupervised approaches, namely ECGdeli [10]
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and ECGK:it [11], and an efficient supervised ConvLSTMgu
[8] is evaluated using two open source databases QTDB [12]
and LUDB [13], employing a non-database specific strategy.

II. METHODOLOGY

Assume at this stage that the ECG segmentation is performed
using either an unsupervised or a supervised method. This
segmentation result will then be introduced to the subsequent
proposed DL-based postprocessing stage to reduce FDR as
previously mentioned (see Fig. 1). Two key points are addressed
in this section: (i) the strategy being adopted to train both
the segmentation and the proposed DL-based postprocessing
models, and (ii) the evaluation methodology considered for a
comprehensive and full ECG segmentation analysis.

A. Dataset and training strategy & postprocessing model

Two databases from PhysioNet were exploited here to train
and evaluate the studied pipelines. Annotations indicating the
onsets, peaks, and offsets of the P, QRS, and T waves in
each recording (one record per patient) in both databases were
provided. The first database, namely QTDB [12], comprises
105 recordings of 15 minutes each, with two ECG leads.
The sampling frequency is 250 Hz. The second database, the
Lobachevsky University Electrocardiography Database (LUDB)
[13], comprises 200 10-second, 12-lead ECG recordings, with
a sampling frequency equal to 500 Hz.

It is important to note that, in this study, a non-database
specific strategy was adopted to ensure the generalization of
the proposed pipeline: all supervised processes were trained
using the QTDB and tested on LUDB (see Fig 1). More
precisely, each of the 105 ECG QTDB recordings has been
split into segments of 2000 samples (8 seconds). After that,
70 % of the obtained segments were used to train the DL-
based segmentation model, ConvLSTMg,, while the remaining
30 % were used as the training set for the postprocessing DL
model. Regarding the testing set (LUDB recordings), a 5-fold
cross-validation technique was applied to test the DL-pipeline,
namely segmentation + postprocessing (see testing stage, Fig 1).
As far as the unsupervised methods (ECGdeli and ECGkit)
were concerned, they were evaluated only on the LUDB to
make results comparable.

The DL-based postprocessing model involves several com-
ponents to extract valuable features from the segmented ECG
waves, as shown in Figure 2. The input layer receives the three
outputs (P, QRS, T) of the segmentation step. This input layer
is followed by a 1D-CNN layer of 64 filters with a kernel size
of 12 to extract local features. Then, a BiLSTM layer [14]
with 64 cells is used to capture temporal dependencies. Finally,
a dense layer is used to deliver three corrected ECG segments.

B. Evaluation criteria

As previously mentioned, a lot of existing ECG segmen-
tation studies assess the performance of their methods using
standard classification metrics (i.e., Accuracy, Recall, Precision,
Specificity, and F1-score). The latter metrics are computed for
each wave through a binary classification of the ECG samples.

However, note that if these metrics are far from acceptable,
the segmentation methods used are classified as inefficient.
Importantly, achieving good segmentation performance based
on these classification metrics does not necessarily ensure the
effectiveness of the method used. In fact, these metrics are
primarily designed to assess the accuracy of detecting the onset
and offset of P, QRS, and T waves, but they are not robust
for evaluating the number of incorrectly detected waves. To
cope with this issue, we propose to consider the following
complementary criteria.

Criterion 1 assesses standard metrics of classification, namely
the F1 score, the accuracy, the recall, and the precision.

Criterion 2 assesses the FDR rate of each wave (P,
QRS complex, and T) and each evaluated method, given by:

(ny, —ny) * 100
Ny

FDR = D
where n,, denotes the number of waves detected by the tested
method, and n; denotes the number of waves annotated in
the database.

Criterion 3 calculates the mean and the standard deviation
(in [ms]) of the difference between the onset and offset of P,
QRS and T waves estimated by the pipeline compared to their
corresponding clinical annotations.

III. EXPERIMENTS AND RESULTS

For a comparative evaluation, the results obtained using
Criteria 1, 2, and 3 are given, for each method and each wave,
in Tables I and II, with and without proposed postprocessing,
respectively.

Criterion 1 - Table I shows that the supervised method,
namely ConvLSTMg,, clearly outperforms the unsupervised
methods, whatever is the calculated metric and the segmented
wave (P, QRS, and T). According to Criterion 1, we can
conclude that the postprocessing stage is unnecessary. However,
when evaluating the methods using the number of detected
waves and FDR (Criterion 2 - Table I), we notice that the
supervised method has a high FDR, which means that it suffers
from the overdetection of P, QRS, and T waves, while the
ECGK:it method tends to underdetection of P and T waves.
Now, if we take a look at Criterion 3 - Table I, clearly ECGDeli
and ECGKit are less effective at precisely detect the onset and
offset of the segmented waves, especially the P and T waves,
which present a weak SNR in comparison to QRS.

Applying a postprocessing stage (see Table II), clearly
benefits the supervised method. We can see that after applying
the postprocessing stage, ConvLSTMg, is still the best in terms
of Criterion 1. More importantly, this postprocessing stage
deals with overdetection that the supervised method suffers
from (Criterion 2-Table II), as it provides a very limited FDR
of -0.24%, 3.29%, and 4.85% for the P, QRS, and T waves,
respectively. Additionally, the supervised method is still the
best in terms of detecting the onset and the offset of all waves
(Criterion 3 - Table II).
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Fig. 2. Proposed model for DL-based postprocessing.

IV. DISCUSSION

Reliable ECG segmentation is essential for diagnosing
various cardiac diseases. In this study, a deep learning-based
postprocessing method has been proposed, mitigating the FDR
of the segmented ECG waves. The preliminary results showed
that the DL-based method outperformed the standard unsuper-
vised one in terms of classical statistical metrics (Criterion 1).
We also demonstrated that while classical unsupervised methods
suffer from the underdetection issue, the DL-based ones tend
to overdetect the number of P, QR, and T waves, leading in
turn to a high FDR. This emphasizes that evaluating ECG wave
segmentation algorithms using only classical statistical metrics,
as commonly practiced, is not fair and may lead to erroneous
results. More precisely, low values of metrics calculated in
Criterion 1 will indicate that the used method is inefficient.

High performance in terms of these metrics does not necessarily
guarantee that the method performs well overall. Therefore,
in this study, we also propose evaluating the performance of
the pipelines using Criteria 2 and 3 to ensure a comprehensive
and reliable evaluation. The use of such criteria demonstrated
that a postprocessing stage is mandatory to reduce the FDR,
regardless of the approach used. Finally, we also confirmed that
the ConvLSTMga method, supported by a shallow DL-based
postprocessing stage, outperformed the unsupervised methods,
namely ECGDeli and ECGK:it, and this for all segmented waves
and the evaluation criteria considered.

V. CONCLUSION

In this study, a new DL-based postprocessing model designed
to deal with the high FDR inherent to DL-based ECG
segmentation methods is proposed. The results obtained showed
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Fig. 3. Example of P and QRS segmentation: (a), (d) expert annotation; (b),
(e) without the proposed postprocessing (postopro.) stage; (c), (f) with the
proposed postprocessing stage.

TABLE 1
CRITERIA 1, 2, AND 3 OF THE THREE TESTED METHODS WITHOUT ANY
POSTPROCESSING.
Criteria Metric Model P QRS T
ECGDeli 0.9567 0.9634 0.9231
Accuracy ECGkit 0.9558 0.9405 0.9343
ConvLSTMsa 0.9798 0.9766 0.9596
ECGDeli 0.9630 0.9542 0.8429
_ Recall ECGkit 0.7842 0.8259 0.7372
g ConvLSTMsa 0.8251 0.9100 0.8826
£ ECGDeli 0.6731 0.6976 0.7115
E Precision ECGkit 0.7236 0.5909 0.8183
ConvLSTMss 0.9321 0.8200 0.8603
ECGDeli 0.7924 0.806 0.7716
Fl-score ECGkit 0.7527 0.6389 0.7756
ConvLSTMss 0.8753 0.8618 0.8710
Expert Annotation 1211 1215 1215
ECGDeli 1241 1243 1227
T Number of Waves 10 1167 1370 995
§ ConvLSTMsa 1420 1544 1580
= ECGDeli 247 2.30 0.98
© FDR[%] ECGKit -3.63 12.75 -18.10
ConvLSTMsy 17.25 27.07 30.04
ECGDeli 1370 + 1646 7.61 = 8.16 21.48 + 21.65
- Onset ECGKit 14.15 + 2878 5.73 + 10.55 15.70 + 28.97
= m £ o [ms] ConvLSTMgx 669 + 874 585+ 685 11.08 + 13.04
E ECGDeli 10.87 + 10.63 11.76 + 11.56 22.91 + 30.58
g End ECGKit 895 + 2478 733 £ 1929 14.56 + 28.82
m o [ms] ConvLSTMsa 475 £7.63 568 £ 585 898 + 14.04

that the DL-based pipeline (DL-based segmentation + DL-
based postprocessing) outperforms both the supervised and
unsupervised methods, in terms of classical classification
metrics, the FDR of segmented waves, and the mean error
related to the onset and offset of P, QRS complex, and
T waves. In addition, this study underlined that evaluating
segmentation quality using only standard classification metrics
is not sufficient. In fact, relying solely on these measurements
can lead to misleading conclusions about the behavior of the
method used, and incorporating additional evaluation criteria,
such as the FDR of segmented waves, is mandatory to provide
a comprehensive assessment.

TABLE II
CRITERIA 1, 2 AND 3 OF THE THREE TESTED METHODS WITH THE
PROPOSED POSTPROCESSING STAGE.

Criteria Metric Model P QRS T
ECGDeli 0.9592 0.9629 0.9246
Accuracy ECGkit 0.9563 0.9411 0.9333
ConvLSTMgy 0.9798 0.9772 0.9595
ECGDeli 0.9606 0.9514 0.8355
_ Recall ECGkit 0.7759 0.8235 0.7369
5 ConvLSTMsj 0.8198 09117 0.8826
T ECGDeli 0.6874 0.6958 0.7201
‘5 Precision ECGkit 0.7312 0.5944 0.8127
ConvLSTMsy 0.9380 0.8243 0.8598
ECGDeli 0.8013 0.8037 0.7735
Fl-score ECGkit 0.7529 0.6904 0.7730
ConvLSTMg, 0.8748 0.8651 0.8708
Expert Annotation 1211 1215 1215
ECGDeli 1241 1243 1211
o Number of Waves 5o 1166 1354 995
£ ConvLSTMs, 1208 1255 1274
E ECGDeli 247 2.30 032
© FDR [%] ECGKit 371 11.44 -18.10
ConvLSTMgy 024 329 4385
ECGDeli 1359 + 1637 7.33 + 841 21.65 + 2451
- Onset ECGKit 1421 + 2884 6.10 + 12.82 16.63 + 29.04
£ m o [ms] ConvLSTMsa 655 £926 611 £8.17 1145+ 1495
El ECGDeli 970 + 1073 12.26 + 12.06 21.91+ 31.64
5 End ECGKit 9.08 £ 2477 9.10 £ 2532 14.33 £ 28.87
m £ 0 [ms] ConvLSTMga 463 £ 7.60 604847 1021 + 17.64
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