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Abstract—Are complex Deep Learning (DL) models necessary
for effective heart sound segmentation? This paper demonstrates
that an effective denoising approach combined with a standard low-
cost probabilistic Markov-based segmentation method provides
performance that is comparable to DL models while maintaining
reasonable numerical complexity. The proposed pipeline takes
advantage of the pseudo-periodicity of heart events across cardiac
cycles for an efficient denoising step. This preprocessing step
is reformulated as a constrained low-rank matrix inference in
the framework of a graph signal processing. Denoised heart
sounds are then fed to the classical Logistic Regression Hidden
Semi-Markov Model (LR-HSMM) for segmentation purposes.
A comparative study of the proposed pipeline with one of the
most effective DL models, namely CNN-LSTM, using the CirCor
dataset containing both healthy and murmur PCG signals was
conducted to emphasize our purpose. Obtained results in terms
of both segmentation of the two primary heart sounds S1 and
S2 and murmur classification of this two-step pipeline are quasi-
equivalent to those obtained using the CNN-LSTM model, but
with a relatively lower numerical complexity.

Index Terms—Denoising, segmentation, classification, graph
signal, Markov model, deep learning

I. INTRODUCTION

Cardiovascular diseases (CVD) are the leading cause of
death worldwide, accounting for 20.5 million deaths globally
and 1.7 million in the European Union (EU) in 2021 [1], [2].
Beyond health impacts, CVD imposes a significant economic
burden, costing the EU C 282 billion in 2021 [2], [3].
Cardiac auscultation offers a simple, cost-effective screening
method for heart conditions, but accurate interpretation remains
challenging due to the faint nature and low-frequency content
of heart sounds. This has driven research toward automated
PhonoCardioGram (PCG) analysis [4]. A typical PCG signal
contains two primary heart sounds: S1 (corresponding to
atrioventricular valve closure) marks the start of systole, while
S2 (resulting from semilunar valve closure) is related to
the beginning of diastole [5]. Heart sound segmentation, the
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process of accurately identifying the on/off of these sounds,
forms the foundation of PCG analysis. The precision of this
segmentation directly determines the quality of diagnostic
information extracted from heart sounds, which is essential for
both manual clinical assessments by healthcare providers and
automated diagnostic algorithms.

To meet this requirement, multiple segmentation techniques
have been developed. Initially, the methods were energy-based,
envelope-based, or loudness-based [6]. Subsequently, probabilis-
tic models like Hidden Markov Models (HMM) emerged, which
were successful in modeling heart sound transition statuses
[7], followed by probabilistic models supported by advanced
machine learning (ML) approaches such as LR-HSMM, which
better-modeled heart sound durations and intervals [5]. More
recently, DL techniques have achieved state-of-the-art seg-
mentation performance through various architectures including
Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), Long Short-Term Memory (LSTMs), and
attention-based models [6] A key advantage of DL approaches
is their ability to work directly with raw data and perform
inherent denoising and feature extraction through their hierar-
chical layer structure. However, despite their high accuracy, DL
methods often suffer from increased computational complexity
and reduced interpretability. This raises an important question:
do we always need high-complexity DL models to achieve high
segmentation accuracy? Or can an effective denoising of PCG
make simpler approaches comparable to DL performance?

This paper addresses these questions by introducing a two-
step pipeline that combines graph-based denoising [8] with LR-
HSMM [5], achieving performance comparable to DL-based
CNN-LSTM [6] models while maintaining less complexity and
better interpretability. CNN-LSTM has been selected here as
a comparative method, due to its effectiveness in capturing
both local and temporal dependencies, providing a reasonable
balance between performance and complexity for segmentation
tasks. The proposed denoising method leverages heart events
of pseudo-periodicity by formulating the problem as inferring
a low-rank matrix of denoised cardiac cycles using graph
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smoothness constraints. We evaluated segmentation perfor-
mance by comparing LR-HSMM and CNN-LSTM models
on both raw and denoised PCG CirCor datasets, followed
by classification of heart sounds as healthy or pathological
based on features extracted from segmented cardiac cycles.
Our findings with the proposed two-step pipeline show that
well-designed denoising procedure significantly improves LR-
HSMM performance without removing diagnostically important
low-amplitude events such as murmurs, resulting in improved
segmentation accuracy and more reliable classification.

II. NOTATIONS AND DEFINITIONS

This paper uses italic lowercase for scalars (a), bold
lowercase for vectors (a), and bold uppercase for matrices
(A). The (i, j)-th entry and the n-th column vector of A are
denoted by Aij and an, respectively. For a given matrix A,
its Frobinus norm, trace and transpose are denoted, respec-
tively, by ∥A∥F ,Tr(A) and AT. In addition, its L21-norm
is given by ∥A∥2,1 = Tr(ATΓA) where Γ is diagonal with

Γii = 1/
√∑J

j=1A
2
ij ; IN represents the identity matrix of

size (N × N ). An undirected graph G(V,E,A) is defined
by a set of N nodes V with cardianlity |V| = N , a set
of edges E and a symmetric adjacency matrix A where
Aij = 1 if the i-th and j-th nodes are connected and 0
otherwise. Non-zero entries represent similarity between nodes.
The graph Laplacian matrix L = D − A is symmetric
positive semi-definite, with the diagonal degree matrix D
where Dii =

∑N
j=1Aij (the number of connections at the

i-th node). A graph signal is a function f : V → RN

that assigns a real value to each node. The smoothness
of a graph signal is measured by the graph total variation
∆L(x) =

∑
(i,j)∈EAi,j(xi − xj)

2 = xTLx = ∥L1/2x∥22. A
low value of ∆L(x) indicates a low graph signal variation
between the connected nodes (i.e., a smooth graph signal),
while a high value refers to a non-smooth graph signal.

III. DATASET

This study exploits the publicly available CirCor DigiScope
dataset [9], a comprehensive collection of heart sound record-
ings specifically designed for cardiac auscultation research.
The dataset comprises 5,282 PCG recordings from 1,568
subjects, with 3,163 recordings from 942 subjects (totaling
10.44 hours) being publicly accessible. The PCG signals
were recorded at a sampling rate of 4 kHz from the four
standard cardiac auscultation locations (aortic, pulmonary,
tricuspid, and mitral), about 4 recordings per subject. The
annotation file contains precise temporal markers that indicate
the beginning and ending time instances of fundamental heart
sounds S1 and S2, effectively delineating the systolic and
diastolic intervals. For classification purposes, the dataset
includes labels for murmur-free subjects (695) and those with
murmurs (179), as well as unknown diagnoses (68) with
detailed characterization of murmur properties. In this paper, we
target a binary classification (murmur-free/murmur) task Thus,
the recordings with unknown diagnoses will not be considered
hereafter. This labeling was performed by cardiac physiologists

who independently assessed each recording without relying
on preexisting segmentation data. The real-world clinical
conditions of the dataset, which contain various ambient and
procedural noises, make it particularly suitable for evaluating
robust segmentation and classification algorithms for heart
sound analysis.

IV. PROPOSED APPROACH

Our pipeline follows a structured sequence: first, we denoise
PCG signals using our graph-based denoising method, recently
proposed in [8]. Next, we use the denoised signals to train and
test the LR-HSMM segmentation model [5]. Since the CirCor
dataset contains raw PCG recordings (CirCor-Raw), we apply
graph-based denoising to produce a cleaner version (CirCor-
Denoised). Then, in the proposed two-step pipeline, we train
the LR-HSMM model with this denoised dataset and test it to
assess the impact of denoising on segmentation performance
and the subsequent classification of segmented recordings.

A. Graph-based denoising

Let y(t) be a noisy observation of a clean PCG signal ψ(t)
acquired at time t, such that:

y(t) = ψ(t) + b(t) (1)

where b(t) stands for an additive noise. Given the pseudo-
periodicity of the target heart sounds across cardiac cycles, a
PCG signal with N cycles can be represented in the following
matrix form:

Y = Ψ+B (2)

where Y,Ψ,B ∈ RN×T , with T denoting the cycle duration.
In fact, each recording is divided into individual cardiac cycles,
with the start of each cycle defined as 0.05 seconds before the
S1 label and the end set to 0.05 seconds before the onset of the
following S1, accommodating Heart Rate Variability (HRV).
Shorter cycles are zero-padded to length T . The consistent
shape of S1 and S2 events across clean cycles allows each
column of Ψ to be interpreted as a smooth signal on a graph
(see Figure 1). Consequently, the clean matrix Ψ has a lower
rank than noisy matrix Y.

Following our previous work [8], we formulate the denoising
problem as recovering a clean, low-rank matrix Ψ from the
noisy observed matrix Y, subject to the smoothness on graph
constraint:

argmin
Ψ

∥Y −Ψ∥2F + λ1 ∥Ψ∥2,1 + λ2

∥∥∥L1/2Ψ
∥∥∥2
F

(3)

where λ1, λ2 ∈ R are penalty parameters. The L2,1-norm
enforces the low-rank structure [10], while

∥∥L1/2Ψ
∥∥2
F

pro-
motes the smoothness on graph assumption. We construct the
graph using normalized cross-correlation coefficients between
cardiac cycles, forming the correlation matrix C ∈ RN×N .
The adjacency matrix A connects nodes with cross-correlation
values exceeding 0.6 [11]. The Laplacian matrix L is derived
as noted in Section II. Using the L2,1-norm definition, the
denoising problem can be rewritten as follows:

argmin
Ψ

∥Y −Ψ∥2F + λ1Tr(ΨTΓΨ) + λ2Tr(ΨTLΨ) (4)
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Assuming at this stage the full independence between Ψ and
Γ, the update rule of Ψ is then given by:

Ψ =
(
IN + λ1Γ+ λ2L

)−1

Y (5)

Now, by recalling that, according to the definition of the L2,1-
norm, both Γ and Ψ are linked, the diagonal matrix Γ is
computed at each iteration as follows:

Γi,i =
1√∑J
j=1 Ψ

2
i,j

(6)

The algorithm alternates between updating Ψ and Γ until
convergence. Finally, we reconstruct the denoised PCG signal
using the denoised cardiac cycles by preserving the original
cycle lengths (removing the zero padding) and applying
a spline filter to smooth potential gaps between limbs of
cycles, creating the CirCor-Denoised dataset for subsequent
LR-HSMM training. Figure 1 illustrates the denoising process.

Noisy PCG  record Noisy PCG  cardiac cycles

Denoised PCG  cardiac cycles

Denoising
 on graph 

Reconstructed denoised  PCG record

Cycle-1 Cycle-5Cycle-3Cycle-2 Cycle-4

𝐒𝟏𝐎𝐧 

0.05 
Sec

Start of cycle

Fig. 1. Steps of denoising a PCG signal on graph.

B. Heart Sound Segmentation

The CirCor-Denoised dataset, generated using the graph-
based denoising method, serves as input for heart sound
segmentation using the LR-HSMM. The LR-HSMM proposed
by [5], is defined by the tuple λ = (S,E, π, p) where
S = {Sij} is the state transition matrix with Sij representing
the probability of transitioning from state qi to state qj ;
E = {ej(ot)} are emission probabilities enhanced by logistic
regression, where ej(ot) represents the probability of being
in state qj given observation ot; π = {πi} is the initial state
distribution with πi as the probability of starting in state qi;
and p = {pi(d)} represents explicit state duration probabilities,
where pi(d) is the probability of remaining in state qi for
duration d. For heart sound segmentation, the model employs
four states: q1: S1, q2: Systole, q3: S2, and q4: Diastole.
Before feature extraction, PCG signals undergo Butterworth
filtering with cutoff frequencies of 20 Hz and 400 Hz,
followed by z-score normalization. We extract five key features
from the preprocessed PCG signal: (i) Hilbert envelope
(Hilb), capturing instantaneous amplitude: EnvHilb(t) =
|ψ(t) + jH{ψ(t)}| =

√
ψ(t)2 +H{ψ(t)}2 where H{ψ(t)}

is the Hilbert transform of {ψ(t)}; (ii) Homomorphic
envelope (Homo): EnvHomo(t) = eLPF(ln(|ψ(t)+jH{ψ(t)}|))

where LPF represents a low-pass filter; (iii) Wavelet
envelope using DWT with ’rbio3.9’ wavelet at level 3:
Envwavelet(t) = |DWT[ψ(t)]|; (iv) Power Spectral Density
(PSD) envelope: calculated using short-time Fourier transform
(STFT) with Hamming windows of 0.05s width and 50%
overlap, focusing on the 40-60 Hz frequency band where
most S1 and S2 energy is concentrated (see [5]); and (v)
Shannon (Shan) envelope: EnvShan(t) = −ψ(t)2 log(ψ(t)2),
which enhances segmentation performance. These
features are combined into an observation vector, ot =
[EnvHomo(t), EnvHilb(t), Envwavelet(t), EnvPSD(t), EnvShan(t)]

T .
The LR-HSMM algorithm trains a logistic regression model
to estimate emission probabilities for each heart sound state,
while also estimating transition probabilities between states
(see [5]). In this study, we use a nonspecific patient strategy
with 10-fold cross-validation with subject-stratified folds,
using 90% of the data for training and 10% for evaluation.

V. EVALUATION CRITERIA

We assess our pipeline performance using three criteria:
segmentation quality, classification accuracy, and computational
complexity.

A. Segmentation Quality

We quantitatively evaluate the segmentation quality using
four classical metrics: Sensitivity (Se), Specificity (Sp), F1-
Score, and Accuracy (Acc). These metrics are defined as:
Se = TP

TP+FN ,Sp = TN
TN+FP ,F1-Score = 2 × P+×Se

P++Se ,Acc =
TP+TN

TP + TN + FP + FN ; here, P+ = TP
TP+FP is the precision, TP

represents time samples correctly identified as belonging to
the target events (S1, Systole, S2, or Diastole); TN refers to
samples correctly identified as not belonging to a target event;
FP and FN represent incorrect classifications.

B. Classification Performance

To further evaluate our approach, we assess how improved
signal clarity and segmentation affect pathology classification
(healthy vs. murmur). After segmentation, we extract features
from systolic and diastolic regions as proposed by Kumar et al.
[12]. The extracted features span four domains: (i) Temporal
domain (4 features): loudness (signal intensity), jitters (irreg-
ularity in periodicity), transition ratio (crescendo/decrescendo
patterns), and zero-crossing rate (frequency characteristics); (ii)
Frequency domain (9 features): spectral power in four fre-
quency bands (0-100Hz, 100-200Hz, 200-300Hz, 300-400Hz),
spectral flux (temporal changes in spectral content), spectral
centroid (center of gravity of the spectrum), spectral skewness
and kurtosis (shape of spectral distribution), and fundamental
frequency (lowest frequency peak); (iii) Statistical domain
(2 features): skewness and kurtosis of time-domain samples;
and (iv) Nonlinear dynamics (1 feature): largest Lyapunov
exponent (chaos measurement), which quantifies complexity
with higher values indicating pathological conditions (see [12]
for more details). In total, 16 features are extracted from
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each of the systolic and diastolic segments, resulting in a
combined feature vector of 32 dimensions for classification.
Following comparative tests of multiple classifiers (Logistic
Regression (LR), Support Vector Machine (SVM), Random
Forest (RF), K-Nearest Neighbors (KNN), Adaptive Boosting
(AdaBoost), and Naive Bayes (NB)), the weighted KNN yielded
the best performance and was selected for our evaluation.
We use the same four metrics (Se, Sp, F1-Score, Acc) to
assess classification performance, where TP represents correctly
classified murmur cases, and TN represents correctly classified
healthy subjects.

C. Computational Complexity

We evaluate computational complexity by analyzing nu-
merical complexity using Big-O notation [13], and practical
implementation aspects including the number of operations per
timestep, memory usage, inference time, and the number of
learnable parameters. This analysis aims to show the practical
advantages of the simpler proposed two-step pipeline compared
to DL approaches, particularly in resource-constrained settings.

VI. RESULTS AND DISCUSSION

In this section, we evaluate the impact of the graph-based
denoising method on segmentation quality and classification
accuracy on the CirCor dataset.

A. Influence of denoising on segmentation quality

We compare the performance of LR-HSMM and a CNN-
LSTM model on the raw and denoised versions of CirCor
dataset. The used CNN-LSTM model consists of three 1D
convolutional layers (with 16, 32, and 64 filters respectively,
each with a filter size of 3), tanh activation function, layer
normalization, followed by two bi-directional LSTM layers
(128 hidden units each), a fully connected layer with 4
units, and a softmax output layer. This architecture directly
processes raw PCG signals, where the CNN layers inherently
function as feature extractors. Both models were trained
on raw and denoised versions of the CirCor dataset using
a non-patient-specific strategy with 10-fold cross-validation,
employing subject-stratified folds. For the CNN-LSTM model,
each training set was further divided with 90% for training
and 10% for validation. The CNN-LSTM model processed
4-second PCG signal windows in batches during training
due to memory limitations, while the LR-HSMM model
processed complete recordings. The models were tested on
both raw and denoised data.Table I demonstrates the impact
of denoising on segmentation performance. When applied to
raw PCG signals (CirCor-Raw), the LR-HSMM model shows
moderate performance (Acc: 0.830, Se: 0.812, Sp: 0.940, F1-
score: 0.819), significantly lower than the CNN-LSTM model
(Acc: 0.931, Se: 0.929, Sp: 0.977, F1-score: 0.923). This
performance gap highlights the limitation of LR-HSMM when
processing noisy signals. However, after applying the graph-
based denoising (CirCor-Denoised), with the proposed two-
step pipeline, the LR-HSMM model’s performance improved
significantly (Acc: 0.916, Se: 0.895, Sp: 0.969, F1-score: 0.898),

and is quasi-equivalent to those of CNN-LSTM (Acc: 0.937, Se:
0.926, Sp: 0.978, F1-score: 0.924). Interestingly, the denoising
did not lead to a notable improvement in segmentation with DL,
as the deep neural networks can perform some type of inherent
denoising. Figure 2 visually confirms these findings. In the

TABLE I
AVERAGE SEGMENTATION PERFORMANCE ACROSS 10 FOLDS

Dataset Model Acc Se Sp F1-Score

Raw LR-HSMM 0.830 0.812 0.940 0.819
CNN-LSTM 0.931 0.929 0.977 0.923

Denoised LR-HSMM 0.916 0.895 0.969 0.898
CNN-LSTM 0.937 0.926 0.978 0.924

left column, the LR-HSMM segmentation (red line) of the raw
murmur PCG signal shows significant misalignment with expert
annotations (black dashed line), while after denoising, the
alignment is improved. For murmur-free PCG recordings (right
column), denoising similarly enables the LR-HSMM model to
achieve nearly perfect alignment with expert annotations.

Denoised murmur-free PCG  Denoised murmur PCG  

Noisy murmur-free PCGNoisy murmur PCG

murmur

murmur

S1 S2Systole Diastole

S1 S2Systole Diastole

S1 S2Systole Diastole

S1 S2Systole Diastole

Fig. 2. Comparison of PCG segmentation before and after denoising. Top
row shows raw signals and bottom row shows denoised signals using graph-
based method. Left column shows PCG with murmur, right column shows
murmur-free PCG, and black dashed lines represent manual expert annotation.

B. Influence of denoising on classification performance

Using the 32 features extracted from systolic and dias-
tolic regions (described above), we evaluated classification
performance with a weighted KNN classifier. Table II reveals
how denoising impacts murmur classification performance.
On raw data (CirCor-Raw), both segmentation methods yield
modest classification results. The LR-HSMM model produces
the lowest metrics (Acc: 0.693, Se: 0.603, Sp: 0.774, F1-
Score: 0.652), with the CNN-LSTM model performing only
slightly better (Acc: 0.714, Se: 0.640, Sp: 0.781, F1-Score:
0.680). This confirms that noise in the PCG signals significantly
affects classification accuracy regardless of the segmentation
method used. The most significant finding appears in the CirCor-
Denoised results. After applying graph-based denoising, both
segmentation methods show substantial improvements. For the
proposed two-step pipeline, the LR-HSMM achieving metrics
(Acc: 0.754, Se: 0.709, Sp: 0.799, F1-Score: 0.741) nearly
identical to CNN-LSTM (Acc: 0.756, Se: 0.712, Sp: 0.802,
F1-Score: 0.745). This eliminates the performance gap between
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the two approaches, demonstrating that proper denoising can
enable the simpler, more interpretable LR-HSMM model to
match the classification performance of complex DL models.
Note that classification performance was enhanced for both LR-
HSMM and CNN-LSTM because the graph-based denoising
successfully preserves the low-amplitude murmur patterns
(visible in the systolic phase between S1 and S2, Figure 2) while
effectively removing random noise. This selective preservation
of clinically significant features is a key advantage of the
graph-based approach, as it maintains diagnostically important
signals and improves classification performance.

TABLE II
AVERAGE CLASSIFICATION PERFORMANCE ACROSS 10 FOLDS

Dataset Model Acc Se Sp F1-Score

Raw LR-HSMM 0.693 0.603 0.774 0.652
CNN-LSTM 0.714 0.640 0.781 0.680

Denoised LR-HSMM 0.754 0.709 0.799 0.741
CNN-LSTM 0.756 0.712 0.802 0.745

These results indicate that the well-organized graph-based
denoising approach could improve the direct segmentation of
heart sounds, and also can enhance the quality of features
extracted for downstream diagnostic tasks. The nearly identical
performance between the proposed two-step pipeline and CNN-
LSTM suggests that with appropriate preprocessing, simpler
and more interpretable models can be as effective as complex
DL approaches for PCG analysis. Although denoising didn’t
significantly improve DL-based segmentation, it still leads to
enhanced subsequent classification performance.

C. Computational complexity

The computational comparison summarized in Table III
highlights significant practical differences between the proposed
two-step pipeline (Graph-based denoising and LR-HSMM)
and CNN-LSTM models. Theoretical complexities in terms of
numerical flops are O(k1SL) and O(k2SL) for the two-step
pipeline and the CNN-LSTM model, respectively, where SL
is the sequence length and ki, i ∈ {1, 2} denotes the number
of operations per timestep. Notably, the proposed two-step
pipeline requires approximately 660 times fewer operations
per timestep and fewer parameters (44 vs. 600,900) compared
to the ones of CNN-LSTM. This results directly in faster
inference (0.8 sec vs. 2.3 sec for a 10-sec recording) and
memory consumption (24 MB vs. 112 MB). Consequently,
the LR-HSMM, supported by graph-based denoising, offers
an efficient and more interpretable alternative to CNN-LSTM,
without sacrificing performance quality.

TABLE III
COMPUTATIONAL COMPARISON BETWEEN THE PROPOSED TWO-STEP

PIPELINE AND CNN-LSTM

Metric LR-HSMM CNN-LSTM
Theoretical complexity O(k1SL) O(k2SL)
Operations per timestep k1 = 920 k2 = 608× 103

Learnable parameters 44 600.9× 103

Inference (10-sec record) 0.8 sec 2.3 sec
Memory (10-sec record) 24 MB 112 MB

VII. CONCLUSION

This paper proposed a two-step pipeline consisting of (i)
a graph-based denoising method that exploits the pseudo-
periodicity of cardiac cycles and (ii) the standard LR-HSMM
technique for heart sound segmentation. The goal was to bridge
the performance gap between simpler probabilistic models,
supported by classical machine learning methods, and deep
learning-based approaches for heart sound analysis. Results
on the CirCor dataset demonstrated that, following denoising,
the segmentation performance of the proposed pipeline closely
matched that of the CNN-LSTM model, while offering better
interpretability and requiring fewer computational resources.
These findings suggest that, with proper preprocessing, simpler
probabilistic models can achieve performance comparable to
deep learning models for heart sound segmentation. Future
work should focus on extending this approach to other pseudo-
periodic physiological signals, exploring additional models,
and optimizing the construction of the graph structure.
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