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Abstract—Convolutional networks have shown strong perfor-
mance in physiological signal classification, generating robust
temporal representations without expert knowledge. In contrast,
handcrafted features, are able to capture statistical, fractal,
complexity-based, cardiac, and respiratory characteristics at
the cost of feature engineering. This paper explores a fusion
framework combining physiological one-dimensional features
from deep convolutional networks and handcrafted parameters
extracted from signals obtained from mmWave radar, RGB and
depth cameras. A cross-attention module guides the deep feature
extraction process, allowing convolutional features to refine their
representations based on handcrafted descriptors. The fusion
approach improves accuracy across all physiological classification
tasks, achieving 15% improvement in pose estimation, 24%
in breathing pattern classification. These results highlight the
advantages of hybrid feature integration for remote health mon-
itoring, particularly in elderly care and physiological assessment.

Index Terms—Biometric analysis, multimodal data fusion,
breathing pattern

I. INTRODUCTION

Non-invasive monitoring of physiological signals, such as
respiration and cardiovascular activity, has gained significant
attention in healthcare applications. Radar [1] and camera-
based [2] systems capture data that can be treated as one-
dimensional time-series data while preserving privacy and
remaining unaffected by varying light conditions. The resulting
signals provide valuable data for classification tasks such as
breathing pattern analysis and physiological state monitoring
used in remote health assessment and elderly care [3]. The
signals can be analyzed using two primary approaches. One
approach relies on handcrafted feature-based models, which
capture non-linear characteristics such as frequency-domain
representations but require domain expertise to extract special-
ized features from cardiac or respiratory signals. Alternatively,
deep learning models automatically learn features by focusing
on spatio-temporal patterns, eliminating the need for manual
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feature engineering while leveraging data-driven represen-
tation learning. Multimodal sensor fusion frameworks have
explored integrating different sensors at various levels (e.g.,
sensor, model, and decision) to leverage multiple modalities.
However, limited efforts have been made to develop models
that effectively fuse one-dimensional handcrafted features with
deep-learned features across different modalities and sensors
for physiological analysis. In this work, we propose a novel
architecture that fuses handcrafted features, obtained through
feature engineering, with convolutional features extracted from
a self-supervised model. These features are derived from
four signals representing breathing and heart activity, cap-
tured using an mmWave radar and an RGB-D camera. The
motivation behind this fusion arises from the hypothesis that
combining linear, temporal convolutional features with non-
linear, frequency-domain, and complex-domain features can
enhance model performance by leveraging the complementary
nature of these representations. Our model introduces a multi-
modal fusion framework at two levels, with key contributions
summarized as follows:

o First, we propose an intermodality feature fusion ap-
proach that integrates handcrafted features from the fre-
quency, complex, and non-linear domains with convolu-
tional temporal features extracted from a self-supervised
model, guided by a cross-attention mechanism.

e Second, we implement post-fusion modality by combin-
ing four intermodality fused streams. These modalities are
derived from heart and respiration waveforms captured by
RGB-D and mmWave radar signals.

« Finally, we evaluate the framework on classification tasks,
including breathing pattern estimation and biometric in-
formation, such as sex classification. Additionally, we
conduct an ablation study to assess the improvements
introduced by our fusion model.
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II. RELATED WORK

Physiological studies have traditionally derived features
from signal analysis, extracting handcrafted features from
biological time series using specialized libraries such as
Heartpy [4] and Neurokit [5]. This approach leverages the non-
linearity of handcrafted features and extends beyond temporal
components by analyzing frequency, fractal-based descriptors,
and purely statistical features. These features are then used
in classification tasks to characterize activities, and identify
abnormal respiration patterns [6]. Despite demonstrating good
generalization [7], handcrafted features-based models require
expert knowledge and manual feature engineering to capture
meaningful characteristics.

A different approach uses deep learning (DL) models, par-
ticularly convolutional neural networks (CNNs), which have
demonstrated strong performance in learning feature represen-
tations directly from raw signals [8]. CNNs effectively capture
local spatio-temporal characteristics, eliminating the need for
predefined feature extraction [9]. However, CNNs primarily
focus on local structures model linearity and temporality in
data, which limits their ability to capture diverse domain-
specific features, such as frequency information. Although DL
provides advantages in certain approaches, the choice between
DL and handcrafted features should be carefully considered for
each specific study [10].

The limited exploration of fusing handcrafted and DL
features has led to investigations into their complementarity,
aiming to enhance classification performance when integrated
[11]. In physiological signal analysis, hybrid approaches have
been explored to improve robustness by leveraging handcrafted
descriptors alongside DL features [12]. This has motivated
the development of fusion strategies that effectively integrate
both representations, ensuring improved interpretability and
classification accuracy in biosignal-based health monitoring.
Although experiments on fusing handcrafted and DL features
have been conducted for image processing [13] and facial
expression recognition [14], to the best of our knowledge,
no studies have explored this approach for one-dimensional
physiological data using different sensors, such as cameras
and radar, across multiple modalities, including breathing and
cardiac waveforms.

In this work, we propose a framework for studying the
fusion of features extracted from biosignals using both DL
models and handcrafted feature extraction to classify breathing
pattern activities and biometric signals.

III. METHODOLOGY
A. Dataset

The heart and respiration waveforms used in this work are
obtained from the OMuSense-23 dataset [15]. This dataset
consists of labeled data collected from an RGB-D camera
(Intel RealSense D435) and a millimeter-wave radar (Texas
Instruments IWR1443), capturing 50 users in three different
poses (standing, sitting, and lying down). Each user performs
four 30-second activities representing specific breathing pat-
terns (normal breathing, reading, guided breathing, and apnea)

in three recordings, resulting in a total of 150 videos. The four
selected signals from the dataset used in our experiments are
the following, with a sample shown in Figure 1.

o Heart activity waveform. Obtained from the mmWave
radar signal and filtered within the common human heart
frequency band from 0.8 to 4 Hz [16].

o Heart activity waveform. Derived from the RGB
stream using a rPPG signal, processed through the
Face2PPG [17] framework with a chrominance-based
method (CHROM) [18].

o Respiration activity waveform. Obtained from the radar
signal, filtered within the common respiration frequency
band from 0.1 to 0.6 Hz. [16].

o Respiration activity waveform. Derived from the depth
stream, where chest movement is calculated by averaging
a selected RGB patch data into a scalar value.

Heart waveform (mmWave Radar)
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Heart waveform (rPPG‘ signal from RGB caméra)
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Breath waveform (mmWave Radar)

Breath waveform (Depth caméra)
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Fig. 1. Sample of the four signals extracted from mmWave Radar and RGBD
depicting two breathing patterns (guided breathing and apnea).

We follow the data preprocessing of previous work [15],
standardizing signals per video to reduce setup-specific vari-
ations, resampling to 20 Hz, and segmenting into 10-second
windows with a 1-second sliding interval.

B. Handcraft feature extraction module

The handcrafted extraction module derives a subset of
features from different domains. These features are calculated
for all the signals contained in every window.

1) Statistical features: Statistical features describe the dis-
tribution and variability of the signal over time. The extracted
features include mean, standard deviation, maximum, mini-
mum, percentiles, and four interquartile ranges. Furthermore,
the dynamic range and the mean crossing rate are computed.

2) Fractal features: Biological signals, due to their inherent
complexity and non-linear nature, exhibit fractal properties
that can reflect changes in sympathetic activity. [19]. Self-
similarity and scaling properties are measured by Katz and
Higuchi [20]. Fractal dimensions are also computed to quantify
irregularities in the signal over time. Detrended Fluctuation
Analysis (DFA) is applied to assess long-range correlations
in the data while Permutation entropy measures the random-
ness or predictability of a time series. Hjorth parameters
are calculated to provide additional insights into rapid signal
fluctuation.
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3) Complex features: We use the NeuroKit2 [5] library to
explore complex features that capture non-linear relationships
within the signal. Hurst exponent, identifies and self-similarity.
Multiscale Entropy (MSE) assesses signal complexity across
multiple time scales, while Approximate Entropy (ApEn) and
Sample Entropy (SampEn) quantify the regularity and unpre-
dictability of the signal.

4) Cardiac features: From the two heart-related signals, a
subset of physiological features is extracted using HeartPy li-
brary [4]. Time-domain features measure heart rate variability
(HRV) and inter-beat intervals (IBI), which represent the aver-
age time between consecutive heartbeats. Poincaré features are
used to reflect short and long term HRV components. Cardiac
Sympathetic Index (CSI) and the Cardiac Vagal Index (CVI),
provide insights into autonomic nervous system regulation.
Frequency-domain such as High-Frequency Normalized Units
(HNU) are also extracted.

5) Respiratory features: The two breathing signals are
analyzed to extract temporal, amplitude, and respiratory rate
characteristics. The exhalation-inhalation transition (NN) is
evaluated in terms of its mean, variability, and average
duration. Amplitude from respiratory peaks and Respiratory
rate are also added. The total number of features per win-
dow is distributed as: 23 statistical, 10 fractal, 4 complex,
25 heart-related, and 4 breath-related features. The resulting
handcrafted feature vector is named Hepc.

C. Deep convolutional feature extraction module

Deep convolutional feature extraction is performed using
an SSL multimodal framework [21]. This framework encodes
four physiological signals into distinct feature vectors using a
ResNet-based 1-D encoder. A temporal contrastive module is
then applied to all pairwise combinations of these encodings,
leveraging contrastive loss to capture temporal dependencies.
Next, a contextual contrastive module employs a Normalized
Temperature-scaled Cross Entropy (NT-Xent) loss to minimize
the distance between representations from the same time win-
dow while maximizing the distance between those from differ-
ent windows [22]. The total self-supervised loss is computed
as a weighted sum of the temporal and contextual contrastive
modules, averaged across all modality pairs, treating them as
augmented views of the same physiological phenomenon [23].

Training is conducted without labels, enabling the system
to learn robust representations of cardiovascular activity from
multiple signals at a given moment. Once training is com-
plete, these learned features serve as a strong foundation for
fully supervised downstream tasks using a small percentage
of labeled data. At this stage, the temporal and contextual
contrastive modules are removed, leaving only the encoders
for the extraction of features and the convolutional features
named Deyc.

D. Fusion Pipeline Framework

Both deep convolutional and handcrafted features are pro-
jected into smaller subspaces, denoted as Dy and Hp;,
before being fed into the fusion pipeline. The proposed fusion

framework uses a cross-attention mechanism, where deep
convolutional features are modified by attending to specific
parts of the handcrafted features. An attention weight matrix
S is computed, capturing information from both deep convo-
lutional and handcrafted features, given by S = mejH;Oj.
To generate a fusion encoding vector, the Hadamard product
is applied between the original deep convolutional features
and the normalized attention score matrix .S using a softmax
function. This ensures that D, is refined while retaining
information from both the Dy, and Hp,; feature vectors.
Since Ho; represents high-level handcrafted features, it serves
as a guide for convolutional features to learn complementary
information. This operation is defined in Equation 1.

Frused = (Depe © softmax(.9)) (1)

This process is repeated across the four different modalities
within each window. The pipeline is illustrated in Figure 2.
The fused features are subsequently aggregated in a final post-
fusion modality, calculating the mean of the four modalities
predictions. which is then fed into a classifier. The classifier
consists of two fully connected layers separated by a layer
normalization and a ReLU activation.

E. Training and Evaluation

To evaluate the model, we propose three physiological
classification tasks: breathing pattern, pose, and a combination
of both, referred to as PosAct. Additionally, sex classification
is performed as biometric analysis. The classification tasks are
defined as follows:

o Breathing pattern (four classes): Normal Breathing, Read-
ing, Guided Breathing and Apnea.

o Pose (three classes): Standing, Sitting and Lying Down.

¢ Sex (two classes): based on responses provided in a user
filled form, Female and Male.

o PosAct (12 classes): all possible combinations of breath-
ing patterns and poses.

OmuSense-23 dataset is divided into five folds, each con-
taining data from 10 users with an equal sex distribution.
The classifier performance is evaluated using accuracy within
a train-validation-test split, where training is performed on
three folds, validation on one, and testing on another. Results
are also reported separately for each modality to analyze the
contribution of individual sensor information. This approach
allows us to assess the role of each feature type and evaluate
the effectiveness of the fusion model. To ensure a balanced
and comprehensive evaluation, we also report results using
five-fold cross-validation. All classification models are trained
in a supervised manner using a cross-entropy loss function.
Additionally, we conduct an ablation study where each fea-
ture stream (handcrafted and deep features) is independently
evaluated across the same classification tasks. This analysis
provides insight into the contribution of the fusion system
to overall accuracy. The performance of handcrafted features
alone is assessed using an XGBoost classifier trained on a
concatenation of all extracted features. It is also evaluated
within the fusion pipeline without the convolutional encoder
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Fig. 2. The fusion pipeline for handcrafted and deep convolutional features is repeated along all different modalities (C) within each window

module and without the intramodality feature fusion compo-
nent. Automatic features are evaluated both as a standalone
model in their SSL framework and within the fusion pipeline
where the feature extraction module and intramodality feature
fusion are removed to assess their impact.

IV. RESULTS AND DISCUSSION

The fusion results from the fusion pipeline are presented in
Table I. The model achieves 85% accuracy in activity classifi-
cation and 97% accuracy in pose classification. For sex clas-
sification, performance to 63% and for PosAct the accuracy is
79%. The results reveal interesting insights. Notably, the fu-
sion approach outperforms both single-feature classifications,
demonstrating its effectiveness in integrating information from
multiple feature types. The radar-based breathing modality
consistently outperforms the other modalities, indicating that
contactless radar sensors may capture subtle respiratory dy-
namics with greater fidelity than visual methods. The five-
fold cross-validation results, Table II, demonstrate consistency
across different folds, suggesting the strong generalizability of
the fusion pipeline.

TABLE I
ACCURACY FOR FUSION MODELS WITH HANDCRAFTED AND
CONVOLUTIONAL FEATURES

Activity Pose Sex PosAct
Fusion pipeline (F) 85 97 63 79
Rad-heart 55 68 50 43
Cam-heart 44 55 59 24
Rad-breath 74 83 47 56
Cam-breath 73 79 57 60
Random Guess 25 33 50 08
TABLE II
ACCURACY FOR FUSION MODELS USING FIVE-FOLD CROSS-VALIDATION
Activity Pose Sex PosAct
Fold I 85 97 63 79
Fold I 89 93 60 80
Fold III 87 92 53 82
Fold IV 88 85 50 70
Fold V 87 96 56 85
Average 87.2 92.6 56.4 79.2

We also conducted an ablation study for each feature stream
independently. The ablation study for handcrafted features

alone (H) is conducted using a train-validation-test approach.
Experiments are performed with an XGBoost classifier and the
fusion pipeline, excluding both the deep convolutional encoder
and the intramodality feature fusion module. Interestingly,
both models yield similar performance, suggesting that they
effectively capture all relevant information from handcrafted
features. Since neither model applies convolutional operations,
their results remain comparable. Modality-specific results in-
dicate that the radar-based breathing modality contributes the
most to classification performance, a trend already seen in the
fusion model. Nevertheless, sex classification performance is
close to random guessing, suggesting that biometric informa-
tion is largely absent from handcrafted features. The baseline
results for handcrafted features are summarized in Table III.

TABLE I
ACCURACY FOR MODELS WITH ONLY HANDCRAFTED FEATURES
Activity Pose Sex PosAct
XGBoost Baseline 81 86 50 68
Fusion pipeline (H) 83 79 49 69
Rad-heart 49 57 53 32
Cam-heart 40 58 56 24
Rad-breath 63 68 52 46
Cam-breath 60 76 51 47

The ablation study using only deep convolutional features
(D) was conducted in two settings: first, within the original
SSL downstream pipeline, and second, in the fusion pipeline
without the handcrafted feature extraction module and the
intramodality feature fusion. Similar to the handcrafted feature
results, the consistency across both methods suggests that the
models effectively capture the most meaningful information
from convolutional features, regardless of the architecture as
shown in Table IV. While handcrafted models achieved higher
accuracy in physiological classification tasks (81% vs. 74%
for activity classification and 86% vs. 78% for pose classi-
fication), convolutional models performed better in biometric
sex classification (61% vs 50%). The fusion results indicate
that integrating handcrafted and convolutional features could
enhance overall performance by leveraging the strengths of
both approaches for physiological and biometric classification.
Moreover the fusion of handcrafted and deep convolutional
features not only boosts general classification accuracy, but
also captures critical physiological nuances for breathing and
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pose classification, while deep features enhance biometric
tasks such as sex classification. These findings challenge con-
ventional assumptions about the sufficiency of deep learning
alone in physiological monitoring and highlight the potential
of hybrid models to reveal more robust representations.

TABLE IV

ACCURACY FOR MODELS WITH ONLY CONVOLUTIONAL FEATURES

Activity Pose Sex PosAct
SSL Baseline 74 78 61 63
Fusion pipeline (D) 69 80 60 62
Rad-heart 55 60 46 37
Cam-heart 39 59 62 24
Rad-breath 59 61 52 40
Cam-breath 62 50 52 34

V. CONCLUSION

This research presented a fusion pipeline based on cross-
attention between handcrafted and deep convolutional features
extracted from cardiac and respiratory waveforms using an
RGB-D camera and mmWave radar. Our results demonstrated
that feature fusion outperformed models using handcrafted
or deep convolutional features independently, suggesting an
information complementarity between the two feature sets.
This aligns with findings in other domains, where handcrafted
and deep representations have been shown to provide com-
plementary information, improving classification performance
[11]. Specifically, the fusion model achieved an improvement
of 15% in breathing pattern classification, 24% in pose esti-
mation, and 25% in a 12-class classifier that mix both tasks,
highlighting its effectiveness across different classification
tasks. By incorporating a late fusion strategy across multiple
modalities, we also introduced a framework for evaluating
the impact of each modality individually. This is particularly
useful in real-world scenarios where certain modalities may
be unavailable due to occlusions or privacy concerns, such
as when cameras cannot be used. For future work, this
pipeline could be further validated on additional datasets to
deepen the analysis of feature complementarity between deep
convolutional models and handcrafted features.

In conclusion, this paper has demonstrated the effectiveness
of our fusion pipeline in integrating features from different
domains such as temporal, amplitude, fractal, and complexity-
based features with purely convolutional features. Our find-
ings also suggest that convolutional models alone struggle
to capture the full complexity of certain frequency-domain
features, highlighting the value of incorporating handcrafted
representations in such tasks.
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