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Abstract—This paper investigates statistical methods for an-
alyzing the spatial coherence function to estimate myocardial
fiber orientation, a critical factor in understanding cardiac mi-
crostructure and advancing cardiac imaging diagnostics. Four ap-
proaches, namely Correlation, Mutual Information, Kraskov Mu-
tual Information, and Granger Causality, were evaluated using
an in vitro experimental dataset designed to simulate myocardial
fiber alignment. Our findings reveal that Granger Causality effec-
tively captures complex and highly anisotropic structures, such
as corners, while mutual information-based methods demonstrate
superior stability and consistency across simpler regions. By
applying a filter based on fractional anisotropy, the performance
of each method was refined, highlighting their distinct strengths
in fiber tracking. To leverage these complementary advantages,
we propose the Fused and Consensus methods, which integrate
the strengths of individual approaches to enhance coherence
analysis and improve fiber orientation estimation. This study
shows that the four methods complement each other by excelling
in different aspects of fiber tracking, offering a robust framework
for accurately characterizing fiber orientation. These insights can
potentially improve the assessment of myocardial microstructure
and aid in the early diagnosis and treatment of cardiac diseases.

Index Terms—Fiber tracking, Ultrasound coherence imaging,
Fractional Anisotropy, Granger Causality, Mutual Information

I. INTRODUCTION

Cardiovascular diseases are the leading cause of death in
Europe, claiming over 3 million lives each year, and highlight
the urgent need for advances in cardiac microstructure anal-
ysis [1]. The structure of myocardial fibers plays a critical
role in cardiac function, influencing both the mechanical
and electrical properties of the heart [2]. Accurate mapping
of these fibers is essential for understanding the complex
dynamics of cardiac function and early diagnosing of various
cardiac pathologies.

Current myocardial fiber imaging techniques, such as mag-
netic resonance diffusion tensor imaging (MR-DTI), provide
detailed structural information but have significant limitations,
including long acquisition times, high cost, limited frame
rates, and sensitivity to tissue motion. Given these limitations,
Ultrasound (US) imaging is a promising alternative due to
its portability, cost-effectiveness, and faster acquisition times.
It offers real-time, non-invasive visualization of internal struc-
tures. By emitting high-frequency sound waves and processing
their echoes, the US generates tomographic images without
radiation exposure [3]. These characteristics make the US a
strong candidate for cardiac imaging, particularly for assessing
myocardial fiber orientation.
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In the literature, three ways of extracting fiber orientation
have been described using US imaging: (i) the backscatter
coefficient, which evaluates the spectral characteristic to pro-
vide insight into tissue microstructure [4], [5], (ii) shear wave
elastography, where the shear wave velocity evolves along the
local fiber orientation [6], and (iii) spatial coherence, where
the coherence of signals received by transducer elements
characterizes the local anisotropy [7].

Among these methods, spatial coherence, namely backscat-
ter tensor imaging (BTI), stands out for its ability to provide
high-resolution visualization of myocardial fibers [7]. In 3D
BTI, spatial coherence is measured using a 2D matrix probe,
and the complete 3D anisotropy is estimated [8]. This tech-
nique has been applied to composite materials and biological
tissues, such as the myocardium, to determine fiber orientation.
In medical imaging, a significant limitation of these works is
the combination of a large number of transducer elements with
limited time samples, making it difficult to find similarities
between signals.

Correlation-based coherence analysis captures only linear
relationships, missing non-linear and causal interactions [9].
The standard approach, which relies on sample covariance or
cross-correlation between RF signals, fails to fully characterize
complex dependencies. To address these limitations, our study
introduces Mutual Information (MI) and Granger Causality
(GC) as alternatives [10]. MI captures both linear and non-
linear relationships, while GC uncovers causal interactions,
offering directional insights into tissue behavior. GC has been
applied in contexts such as electrograms in atrial fibrillation
studies to identify causal influences from latent forces on
signals [11]. Replacing the traditional covariance matrix with
matrices derived from MI and GC improves the accuracy and
robustness of fiber orientation estimation, particularly in noisy
and complex environments. Integrating these methods through
fused and consensus strategies leverages their complementary
strengths, advancing coherence analysis for fiber tracking.

II. BACKGROUND ON BTI

The methodology used in this research employs a plane
wave coherent compounding technique [7] that improves US
image quality. The process begins with the successive emission
of multiple tilted plane waves. The backscattered echoes
from these waves are combined to create voxel-specific focal
zones. Note that this focalization step is mandatory with the
spatial coherence theory of [12]. The coherence of the signals
received by different pairs of transducer elements is then
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Fig. 1: The diagram illustrates the probe structure, with arrows indicating how
the signals are mapped into the matrix S.

calculated. By analyzing the coherence of the signals, it is
possible to extract the local orientation of the tissues at each
focalized voxel by fitting an ellipse to the coherence map [7]
or using the principal component analysis (PCA) to find the
primary direction [8].

A. Spatial coherence calculation for each voxel

The 2D matrix representing the US probe is structured as
an array with IV, elements along the z-axis and [V, elements
along the y-axis. The layout of the probe elements can be
expressed as

(1, Ny)
(2, Ny)

<

(D
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Each element (4, ) in this array corresponds to a specific
position on the probe, where ¢ € [1, N,] and j € [1, N,].

Let s,, € Rt represent the signal for one element, where
n =1,2,...,N;N, denotes one of the N, x N, elements
forming the probe, and N, is the number of time samples
considered locally around the focalized voxel. The temporal
signals collected from all the elements are regrouped in a 2D
data matrix S € RN*(NexNy) - following the configuration
shown in Fig. 1.

The matrix S, which contains the Radio Frequency (RF)
signals, is normalized to obtain S. This is achieved by indi-
vidually normalizing each RF signal in S: subtracting its mean
us and dividing by its standard deviation og along the time
axis.

From the normalized signal matrix Q, the sample covariance
matrix Xg is then calculated as follows:

S x S x 8T € RWexNy)x(NaxNy) (2

TN -1

Here, S” denotes the transpose of S, which swaps its rows
and columns.

B. Coherence Function Calculation

The 2D coherence function R is computed using a ma-
trix formulation that improves computational efficiency for
matrix US probes [8]. It involves normalizing the coherence
over the total number of time points N; by averaging the
coherence function at each time step. For each time step, the
focused, normalized signals are used to compute a 2D spatial
correlation between signals at different locations (z,y) and
their shifted counterparts (z + Az, y + Ay). This correlation
is then normalized using a spatial shift-based denominator

that accounts for the number of elements involved in the
computation. The coherence is computed for all possible
spatial offsets (Axz, Ay) and averaged over time. One can
show that the coherence function can be computed from the
covariance matrix by taking the average of thoroughly chosen
terms:

R(Az, Ay) = —card(éAm ) Z Z Ys(i,5)

J

i1 (il . O
MHNJM

(¢ mod Ny)—(j mod Ny) = Ay,
where card(Va, ay) is the number of elements extracted
from g for a given pair (Az,Ay), and [-] stands for
the round toward infinity operator. Note that in (3) Az and
Ay take values from 1 to N, respectively from 1 to IV,.
This results in a coherence map R of size N, x N,. This
approach evaluates the linear similarity between RF signals
from different transducer elements, making it ideal for large
datasets in US imaging. It helps assess spatial coherence by
measuring how strongly signals from different positions are
related, revealing information about fiber orientation.

C. Angle estimation

PCA is used in this study to extract the primary angles from
the coherence function map. PCA reduces the dimensionality
of the coherence data by transforming it into a set of orthogo-
nal components, with the first principal component capturing
the maximum variance in the data. This approach simplifies
the analysis while preserving the most essential information
for angle estimation [8].

The main output of this analysis is the assessment of tissue
anisotropy, which is quantified using the Fractional Anisotropy
(FA) metric. FA measures the deviation from isotropy, where
values close to zero indicate uniformity in all directions,
i.e., isotropy, and values closer to one signify significant
anisotropy, reflecting a directional preference in the tissue
structure [13]. By analyzing the principal components from
PCA, FA captures the degree of directional variation within
the tissue, allowing for a more precise understanding of fiber
orientation and the relationship between tissue structure and
its anisotropic properties [8].

III. STATISTICAL METHODS FOR COHERENCE ANALYSIS

As mentioned in section II, statistical methods are critical
for analyzing spatial coherence functions in US imaging
to estimate local fiber orientation. This section outlines the
application of two advanced techniques, Mutual Information
(MI) and Granger Causality (GC), and their role in improving
the accuracy and robustness of fiber orientation estimation.
The main idea is to replace the covariance matrix in (2) with
matrices constructed from MI or GC values between pairs of
RF signals. The coherence map computation follows the same
process but uses MI or GC coefficients instead of correlation
values. In the following, the principles of MI and GC are
summarized.

1633



A. Mutual Information: Capturing Non-linear Dependencies

MI measures how much information is shared between
two signals, indicating how knowledge of one signal reduces
uncertainty about the other [14]. This makes MI particularly
useful for detecting complex interactions.

For two signals s,, and s,, of S, the MI between them is
defined as:

I(m,n) =Y > p(x,y)log (M) )

TESm YESn
where p(s,,, s,,) represents the joint probability distribution of
the signals at positions m and n, while p(s,,) and p(s, ) are
the marginal probability distributions for signals s,, and s,,
respectively.

Rooted in information theory, MI measures the amount of
shared information between two signals by calculating how
much knowledge of one signal reduces uncertainty about the
other. This is based on entropy, a concept that quantifies the
unpredictability or randomness of a variable [10].

Calculating MI directly from probability distributions can be
computationally demanding, especially for large datasets. Two
estimation approaches are commonly used to meet this chal-
lenge. The first classical method relies on histograms or kernel
density estimation to approximate joint and marginal distribu-
tions, but it can be slow when dealing with large data [14].
The Kraskov method’s second approach uses nearest-neighbor
distances to estimate the MI, significantly reducing computa-
tional complexity. This makes it more efficient and robust,
especially for smaller sample sizes, by avoiding the need to
estimate probability distributions fully.

B. Granger Causality: Uncovering Causal Relationships in
Fiber Orientation

GC measures the directional influence between two signals,
determining whether one signal can predict another [15].
Unlike correlation and MI, which capture statistical depen-
dencies but not directionality, GC provides insight into causal
relationships.

A key property of GC is that while correlation and MI
produce a symmetric dependence matrix, the Granger Causal-
ity Index (GCI) forms an asymmetric matrix, reflecting the
directional influence between signals.

In the bivariate GC model, the signal value s,, [k] is predicted
using both its past values and the past values of another signal
Sm|k]. The autoregressive (AR) model for s, without the
influence of s,,, is:

snlk] = Z aisnlk — i) + €n[k], (5)

where a; are the autoregressive model coefficients for the past
values of s,,, p is the number of time lags, and €,[k] is the
residual error. When the past values of s,,[k] are included in
the model, we have:

P P
Sulk] = aisnlk —i]+ Y bismlk —i] + €, [k],  (6)
=1 =1

(a) Top view

(b) Front view

Fig. 2: Top (a) and front (b) views of the in vitro setup for fiber orientation
measurements.

where b; are the coefficients for the past values of s,,, and
e, [k] is the new residual error after incorporating s, [k].

The GC is established if the inclusion of the past values of
Sm|k] (i.e., the b; terms) significantly reduces the prediction
error for s, [k]. The GCI is then computed as:

var(e, [k])
GCI(m —n) =1 — ). 7
(= m = 1o (S ™
If GCI(m — n) > 0, then s, Granger-causes s,, indicating
a directional causal relationship.

C. Complementary Maps

To capitalize on the advantages of each approach, two
combined methods were proposed: the Fused Map and the
Consensus Map. The fused map, derived by averaging the
normalized values of coherence, GC, and MI metrics, provides
a smooth and balanced representation of fiber orientation. The
consensus map refines results by thresholding each metric at
the top 40% (greater than 0.6) and summing the binary outputs
to highlight regions of strong agreement across methods.
This threshold was selected based on visual and quantitative
evaluations.

IV. MATERIALS AND RESULTS
A. Data Acquisition and Preprocessing

An in vitro setup was created by wrapping 0.1 mm nylon
thread around a disk to simulate an oriented muscle sheet [8].
The final dimensions of the sheet were 40 x 45 mm, larger
than the aperture of a 1024-element Vermon matrix array
probe (3.47 MHz, 0.3 mm pitch, 10.5 x 9.6 mm footprint).
The disk was placed on a rotary platform to control the
in-plane angle 6, calibrating to minimize out-of-plane mo-
tion (¢4 ~ 0°). Pictures of the experimental setup are
shown in Fig. 2. A Verasonic Vantage 256 US system was
used for the US acquisition, transmitting 25 plane waves
from -20° to 20°. Due to multiplexing, only 256 elements
were used, with the transmission divided into four synthetic
sub-apertures. The received signals were beam-formed us-
ing plane-wave compounding. To simulate different orienta-
tions, acquisitions were made at different nylon thread angles
0s = {—60°,—45° —30°,0°,30°,45°, 60°}. Computations
for each method were performed at a consistent depth of 37
mm.

B. Results

Fig. 3 shows the estimated fiber angles for each method
at a ground truth angle of 60°, with an interpolation factor
of 2 for visualization. Correlation estimated the angle at
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TABLE I: Mean and standard deviation of fiber angle estimates for all methods at various ground truth angles.

Theta | 1 & o Correlation u+o GC p =+ o MI Classic | p+ o MI Kraskov | p + o Fused © £ o Consensus
-60 —57.4 + 4.2 —60.9 £+ 5.8 —55.4 + 3.3 —56.8 + 4.9 —584 £+ 34 —56.8 + 10.2
-45 —40.8 + 6.9 —44.5 + 9.6 —41.3 £ 54 —41.1 £ 7.3 —42.6 + 4.2 —42.5 + 6.1
-30 —29.0 + 4.9 —32.7 £ 4.3 —32.0 £ 4.9 —28.3 + 6.7 —-31.1 + 24 —28.5 + 5.7
0 —04 £ 39 —0.5 £ 0.8 —0.3 £ 2.0 —0.1 £ 2.5 —04 £ 0.9 —0.1 £ 1.6
30 244 + 5.9 29.0 + 6.0 26.8 + 6.3 245 + 7.2 274 + 2.7 22.9 + 5.8
45 38.6 + 84 454 + 7.9 41.2 £+ 6.2 39.0 + 8.1 425 £+ 4.2 414 + 6.6
60 58.7 + 5.7 60.0 + 8.4 56.7 £ 5.5 58.4 + 6.2 60.1 + 3.3 59.7 £ 7.1
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Fig. 3: Estimated fiber angles for the coherence maps for a ground truth angle
of 60° obtained with (a) Correlation: 55.5°, (b) Granger Causality: 52.9°, (c)
MI Kraskov: 64.9°, (d) MI Classic: 64.9°, (e) Fused map: 56.0°, and (f)
Consensus map: 58.3°.

55.5°, relatively close to the ground truth, though with a
less sharp orientation. GC estimated 52.9°, further from the
true value, but its larger ellipse suggests it may be better for
complex scenarios by capturing causal relationships. Both the
Kraskov and classical MI methods estimated 64.9°, closely
matching the true value and effectively capturing non-linear
dependencies with consistent results. The Fused map estimated
56.0°, integrating multiple estimations for enhanced accuracy,
while the Consensus map provided an estimation of 58.3°,
balancing the strengths of all methods.

Table I compares the mean and standard deviation over
a range of ground truth angles for the six approaches.
By applying a filter based on FA thresholding, considering
FA > 0.3 for Correlation, MI Classic and MI Kraskov,
and FA > 0.45 for GC due to its tendency to capture
higher anisotropy regions, the performance of each method

was further refined. For the MI methods, the shape of the
estimated ellipses tended to be more circular, indicating less
anisotropy in the data. In contrast, GC resulted in more
elongated, linear ellipses, indicating higher anisotropy. While
GC provided means closer to the ground truth in several
cases, it also had higher standard deviations, indicating more
significant variability. The MI methods performed better with
lower standard deviations, making them more consistent and
stable across different angles. Therefore, although GC may
provide more accurate mean estimates, the MI methods are
more reliable overall due to their lower variability.

For fused and consensus approaches, a lower FA threshold
of FA > 0.2 was applied for these two maps. This choice
was made to prevent excessive fiber elimination, as a stricter
threshold of FFA > 0.3 would have removed a significant
number of fibers. However, it was observed that the lower FA
threshold did not significantly affect the mean and standard
deviation values, suggesting that the inclusion of lower FA
regions still maintained consistency in the results. These ap-
proaches reinforce how the individual strengths of Correlation,
GC, and MlI-based methods can be leveraged together for
improved robustness and accuracy.

Fig. 4 shows the fiber tracking results for the four different
approaches. It highlights how GC could detect and track
fibers even at the region’s edges, whereas the other three
methods struggled to detect an orientation. This suggests that
these methods can complement rather than replace each other.
Each method excels in different aspects: while GC performs
better at capturing complex structures such as corners, the MI
and correlation methods provide more stable results in less
complex regions. In addition, Fig. 4(e-f) further demonstrates
how these methods can be combined to improve coherence
analysis. Indeed, the Fused and Consensus maps enhance
this by integrating their complementary strengths, improving
coherence analysis in US imaging.

V. DISCUSSION

The results highlight the complementary strengths of Cor-
relation, MI, and GC for fiber orientation estimation in US
coherence imaging. GC effectively captures highly anisotropic
structures, such as corners, due to its ability to model causal
dependencies. However, its higher standard deviation sug-
gests increased variability, particularly in simpler regions.
In contrast, MI-based methods demonstrate more stable and
consistent performance, especially in uniform areas with dom-
inant non-linear dependencies. The fused and consensus maps
integrate these complementary strengths, improving overall
robustness.
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(e) Fused

(f) Consensus

Fig. 4: Fiber tracking results at a 60° ground truth angle using (a) Correlation,
(b) GC, (¢) MI Kraskov, (d) MI Classic, (¢) Fused, and (f) Consensus.

While this study provides a detailed analysis of coherence-
based fiber tracking methods, some limitations should be
considered. First, the computational cost of MI and GC is
higher than correlation-based approaches. The Kraskov MI
method relies on nearest-neighbor estimation, and GC requires
autoregressive modeling, making them computationally inten-
sive. To evaluate their feasibility, we benchmarked execution
time on a representative RF block. Correlation completed in
approximately 0.06 s, MI Kraskov in 0.85 s, MI Classic in
2.51 s, and Granger Causality in 1.00 s. These results highlight
the trade-off between speed and robustness, motivating future
GPU or parallel optimization for real-time use.

Another limitation is that the evaluation was performed
on an in vitro experimental model. This setup allows for a
controlled assessment of different methods, ensuring a well-
defined ground truth for fiber orientation. However, real-
world variability in cardiac tissue structures may influence the
performance of these approaches.Future work will focus on
validating the methods first on ex vivo biological tissues, then
on in vivo ultrasound acquisitions, to assess their robustness
and clinical applicability.

Finally, as shown in Fig. 4, the visualization-based com-
parison of these methods indicates that GC is more sensitive
to structural anisotropy, whereas MI-based approaches provide
higher stability. The fused and consensus maps improve the
accuracy by leveraging the strengths of each method, making
them promising tools for fiber tracking in medical imaging.

VI. COMPLIANCE WITH ETHICAL STANDARDS

This is a numerical study on data acquired on phantoms,
for which no ethical approval was required.
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