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Abstract—Variability in histological staining protocols across
medical centers introduces significant color differences. As a con-
sequence, the performance of Computer-Aided Diagnosis (CAD)
systems degrades when tested in images from unseen centers. To
mitigate this issue, Blind Color Deconvolution (BCD) enables the
separation of stain components. However, traditional analytical
BCD methods are computationally expensive, while deep learning
(DL)-based approaches offer efficient inference once trained.
Despite their efficiency, existing DL-based methods lack effective
priors to guide the learning process. In this work, we propose
GSMNet, a DL-based model that incorporates a Gaussian Scale
Mixture (GSM) prior to promote sparsity in concentration
maps. To address the intractability introduced by this prior, we
formulate an augmented probabilistic model that enables efficient
variational inference. We evaluate GSMNet on two tasks — stain
separation and breast cancer classification — demonstrating that
it achieves performance superior to or comparable with state-of-
the-art BCD methods while being significantly faster.

Index Terms—Blind Color Deconvolution, Deep Learning,
Variational Bayes, Gaussian Scale Mixture.

I. INTRODUCTION

Accurate diagnosis in computational pathology relies on his-
tological staining to distinguish tissue components. However,
variations in staining protocols across medical centers intro-
duce significant color discrepancies, which can degrade the
performance of Computer-Aided Diagnosis (CAD) systems.
As aresult, CAD models often struggle when tested on images
from hospitals not included in the training set [1].

To address this, various approaches have been explored,
among which stain separation stands out, as it is a key
preliminary step for other tasks [2]. Blind Color Deconvo-
lution (BCD) methods tackle this problem by decomposing
the observed RGB image into a color-vector matrix and a
concentration matrix, representing stain intensity per pixel [3].
Today, BCD techniques are essential in large-scale applica-
tions, such as developing foundation models for pathology and
automating image diagnosis [4], [5]. In these applications, the
BCD decomposition process must be performed efficiently.

Different approaches have been proposed to address the
BCD problem, broadly categorized into analytical and deep
learning (DL)-based methods. Analytical methods are typically
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computationally expensive, as they require an optimization
procedure to be performed independently for each image
(see [2] for a review). These approaches incorporate various
constraints to guide the optimization process, either as regular-
ization terms [6]—[9] or as prior probability distributions [10]-
[12]. Notably, enforcing sparsity in the concentration maps
has proven effective, often achieved through different forms
of Super Gaussian (SG) distributions [7], [11], [12].

In contrast to analytical approaches, DL methods are sig-
nificantly more efficient, as they can process unseen images
in a single forward pass once trained. However, due to the
lack of labeled BCD datasets, most of existing DL-based
approaches primarily focus on stain normalization or adap-
tation and cannot perform stain separation. Thus, previous
works have proposed learning stain-invariant features within
a classifier [13], adapting Generative Adversarial Networks
(GANS) for stain normalization [14], and diffusion models for
stain adaptation [15].

As mentioned earlier, these methods cannot inherently sep-
arate an input image into distinct stains. In contrast, certain
DL-based methods do enable stain separation in a blind
scenario [16]-[18]. Among them, BCDNet [18] is the best-
performing one. It follows a Bayesian approach that does not
rely on ground truth data during training yet can still estimate
both the color matrix and concentration maps for a given
image. However, their modeling employs a simple flat prior on
the concentrations which, while flexible, may not effectively
guide the learning process.

In this work, inspired by the success of sparsity-promoting
priors in analytical approaches, we demonstrate how to adapt
these priors for DL-based models. We summarize our main
contributions as follows:

o We propose GSMNet, a DL model for BCD that incor-
porates a sparsity-promoting prior on the concentrations
using the Gaussian Scale Mixture (GSM) family.

e To address the intractability introduced by this new
prior, we perform inference in an augmented probabilistic
model, which remains equivalent to the original model
due to the properties of GSM while ensuring a tractable
training objective.

o We evaluate GSMNet on two tasks — stain separation and
breast cancer classification — demonstrating its superiority
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over existing DL-based and analytical methods while
achieving significantly faster inference.

The remainder of the paper is organized as follows: Sec. II
describes the proposed Bayesian model, Sec. III outlines
the amortized variational inference procedure, and Sec. IV
evaluates the performance of the proposed method. Finally,
Sec. V concludes the paper.

II. BAYESIAN MODELING

Gaussian Scale Mixtures. The family of Super Gaussian (SG)
distributions has been extensively used in different image pro-
cessing problems, including BCD [7], [11], [12]. Intuitively,
when a high-pass filter is applied to a natural image, the
resulting coefficients are sparse, and SG distributions can be
used to enforce this property.

In this work, we are

interested in a subclass Name p(z) -

of Fhe menFIOITed _SG sech  —logsech(z) 2.0
family: distributions log  log(e+|z[) 0.001
whose density allows 2 |z| 0.001

for a Gaussian Scale 2 0.5 ||* 0.01
Mixture (GSM) TABLE I
representation [19] GSM densities considered in this work. All

Formally, a density are obtained as f(z) o exp(—p(z)).

f:R — R admits a GSM representation if there exists
another density 7(w): R — R such that,

+oo
f(z) = /0 N (z]0,w™ ) 7(w)dw. (1)

Here, 7 is called the mixing density. The above expression
will be fundamental for the inference procedure.

Modeling the problem. A stained histological slide is stored
as a RGB image I € RIWX3 with H rows and W
columns. Then, it is transformed into the OD space as Y =
—log (I/ig) € RW X3 where i is the maximum incident
luminosity, set to 255. The Beer-Lambert law [3] states that

Y ' =MCT +NT, )

where M € R3%S is the color-vector matrix, S is the number

of stains, C € REW S ig the stain concentration matrix, and

N € RWX3 is a random noise matrix with i.i.d. zero mean

Gaussian components with precision (5. In the following, we

refer to the s-th column of C as cg, and to the s-th column of

M as mj,. Also, given A € N, we denote [4] = {1,..., A}
From Eq. 2 we obtain the likelihood

p(Y|C,M)xexp(-AlYT—MCT|%), (3

where ||-|| > represents the Frobenius norm and A > 0 is an
hyperparameter.

Next, we define a prior for the concentrations using the fam-
ily of the GSM distributions. Following [11], [12], we consider
a set of N high-pass filters {F!,... FV} ¢ REW>XHW we
write ¢ = F"c; for s € [S] and n € [N]. Denoting the
components of cl' by ¢}, we define,

N S HW

p(C) o [TTTIT (i) “

n=1s=1 i=1

where f is a density that admits a GSM representation. In
this work, following [11] we consider four different GSM
densities, obtained as f(z) x exp(—p(x)), see Table 1.

For the color-vector matrix we adopt the Ruifrok prior [18],
which assume that the color vectors are always close to those
provided by the Ruifrok reference matrix,

D (M) o exp (— [[M — M), ®)

where MRY ¢ R3%5 is the Ruifrok reference matrix [3], and
~ > 0 is an hyperparameter.
Finally, the joint probability distribution is given by

p(Y,C,M) =p(Y [C,M)p(C)p(M). (6)

III. AMORTIZED VARIATIONAL INFERENCE

Following the Bayesian perspective, we aim to utilize the
posterior distribution p(C,M |Y) to estimate C and M
from Y. Since it can not be obtained in closed form, we
approximate it by a variational distribution q(C,M|Y)
using variational Bayesian inference. In contrast to analytical
approaches, we parameterize this distribution using a neural
network (NN) and optimize its parameters by maximizing the
Evidence Lower Bound (ELBO) [18]. Unfortunately, as in
[11], [12], the presence of the GSM prior (see Eq. (4)), makes
it impossible to obtain a tractable expression for the ELBO.

The augmented model. To circumvent this intractability, we
consider an augmented model in which the ELBO is tractable
thanks to the GSM representation presented in Sec. II,

p(Y,C,M,w) :p(Y | C,M)p(M)p(C|w)p(w), (7
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where P, = Zf:le (F")"Q"F", and Q" =
Diag(wl, ..., whys) € RAWXHW Here, w are called

augmentation variables. Integrating them and using the GSM
representation (Eq. 1), we recover the original model in Eq. 6.
To obtain an amortized variational posterior we define

¢*? (C.Mw|Y) =" (C|Y) ¢’ (M| Y)aw|Y).

S
qa*(C|Y) =) d(cc—ng (Y)), (10)
s=1
S
@ (M| Y) = [T (m, | 4, (Y).08, (V)'T), (D

s=1
where pg : REW>3 — RHW, urﬁnsz REWX3 5 R3, and
o RHWX3 5 R are NNs with parameters (c,3). In the

following, identify g = [fte,,-- -, Mey| as the concentra-
tions network and (gepg, ov) as the color matrix network, with
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Fig. 1. A forward pass in GSMNet. The input image I is transformed to the
OD space, Y. The concentrations network puc estimates the concentration
maps, while the color matrix network (gtys, onv) computes the color matrix
distribution.

I'LM = I:l’l’mla M
see Figure 1.

Note that ¢ (C|Y) is defined as a deterministic distri-
bution using the Dirac delta operator. This is conceptually
equivalent to choosing a normal distribution with infinitely
small and constant variance, and then ignoring the constant
terms in the ELBO. Also, as we argue later, the moments of
q(w | Y) can be computed in closed form, and therefore it is
not necessary to parameterize it. For ease of notation, in the
following we omit the dependence on («, 3).

These NNs will be trained using a large dataset of histolog-
ical images {Y1,..., Y} to maximize the ELBO,

Hme ], and oy = Diag (om,, ..., Omg),

M M
> logp(Ym) > > ELBO (Yn), (12)

m=1 m=1

p(Y,C.M,w)
ELBO (Y)=E log————|. (1
O(Y) =EqcMwly) {qu(C,M,w ) (13)
Computing the ELBO. The ELBO can be written as

ELBO (Y) = — LL(Y) — KLy (Y) —KLc (Y)  (14)

— KL, (Y).
Here, LL (Y) corresponds to the log-likelihood,

2
LL (Y) = AEqajy) [HYT ~ Mpuc (Y)TM ‘const, (15)

where const is a constant term that does not depend on the
parameters (c, 3). This term ensures that our NNs correctly
reconstructs the original OD image. In our implementation, it
is approximated using the reparametrization trick. The rest of
the terms act as regularizers, corresponding to the Kullback-
Leibler divergence between the prior and variational posterior
terms. For the color-vector matrix,

KLt (Y) =KL (q (M | Y),p (M) = (16)
= (HNM (Y) - MR“i"i + Trace (oM (Y))) +
—log |onm (Y)] + const,

which keeps the estimated color matrix close to that of
Ruifrok. For the concentrations,

KLc (Y) =Equy) KL (@(C | Y),p(Clw))] = A7)

s
1 T
2 Z“‘:s (Y) " Eqwpy) [Ps] pe, (Y) + const,
s=1

where  Eq(pv) [Ps] = 25:1 Fr'e! (Y)F",
with ©"(Y) =  Diag(6m (Y),....000. (Y)),

0is (Y) = Eq(w;gw) [wis]-

The last term, KL, (Y), corresponds to the Kullback-
Leibler divergence between ¢ (w |Y) and p (w). For most
choices of f this term will be intractable since it depends on
the exact form of the corresponding mixing density 7(w) and
the variational posterior. We address this in the following.

Updating the augmentation variables w. To compute the
rest of the terms we only need the first-order moment of
q(w |Y), see Eq. 17. Fortunately, this moment can be com-
puted in closed form. First, note that the optimal expression
of q(w|7Y) in terms of the rest of the variational factors is
given by [20, Eq. (10.9)]. Applying these equations, and after
some calculations (see [12] for details), we arrive at

n n F1EL (Y))
0is (Y) = Eq(w;w) wis) = =z (Y) f(en (X))

18 5

(18)

where &% (Y) = \/Eq(cile) [(C?S)Q] This expression is the

optimal way to update the parameters 6}, keeping the rest of
the variational distributions fixed.

The training procedure. The procedure to train the proposed
model is in algorithm 1. Motivated by the above observation,
we take an iterative approach. Having initialized 07, (Y,,),
we update (c,3) using gradient ascent. Then, we update
0" (Y,,) using Eq. 18. We repeat this process until a con-
vergence criterion is met. The training objective is a modified
version of the negative of the ELBO,

M
L(e,8,0) =) (1—n)LL(Yn)+nKL(Y,), (19
m=1
where ® = {OF (Yn,):ne[N],selS],me[M]},
KL(Y.) = KLm (Yim) + 7KL (Y,,), and we have in-
troduced two hyperparameters € (0,1),7 € (0,+00) to
account for the balance between each term.

Algorithm 1: Training procedure of GSMNet

Require: Dataset {Y,..
Initialize o, 3, ©.
fort=1,...,7 do

Update (a, 3) using V(o gL (a, 3, O).
Update 67, (Y,,) using Eq. 18 and stopping gradients.
end for

.» Y}, number of iterations 7.

Making predictions. Once the training has finished, we
estimate the concentrations and the color matrix for a given
OD image Y using the learned variational distributions. For
simplicity, we consider the mean of each distribution to
estimate these variables, although other approaches are also
possible.

IV. EXPERIMENTS

We compare the performance of the proposed GSMNet
against state-of-the-art (SOTA) methods in two different tasks:
stain separation and breast cancer classification.
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Fig. 2. Inference time vs. performance across two tasks: stain separation (PSNR, SSIM) and breast cancer classification (ACC, F1). The proposed GSMNet-
sech achieves the lowest inference time while maintaining high-quality estimations. Inference time is measured as the time required to process a 2000 x 2000

image from the WSSB dataset.
A. Experimental setup

Datasets. We use two well-known datasets: Camelyon17 [21]
and the Warwick Stain Separation Benchmark (WSBB) [8].
Camelyonl7 contains Whole Slide Images (WSIs) from five
different medical centers for which the ground truth color
matrix is not available. We use 100 WSIs from each center.
From each WSI we extract 500 non-overlapping patches of
size 224 x 224. WSSB provides the ground truth color matrix
for 24 images of three different tissue types. Using this
matrix, ground truth concentrations and stains are obtained
following [8].

Methods considered. We compare the proposed model against
SOTA methods in BCD, considering two types of baselines:
amortized and non-amortized methods. As an amortized base-
line, we use BCDNet [18], upon which our model is built. For
non-amortized methods, we consider several popular analytical
approaches, including the methods by Ruifrok et al. [3] (RUI),
Macenko et al. [6] (MAC), Vahadane et al. [7] (VAH), and
Zheng et al. [22] (ZHE). Additionally, we consider popular
Bayesian methods such as the Simultaneous Autoregressive
(SAR) method [10], the K-SVD-based method (BKSVD) [23],
and the Hyperbolic Secant prior method (HS) [12]. Non-
amortized methods generally yield more accurate estimations
but at the cost of increased computational time; we analyze
this trade-off in the following discussion. For the proposed
GSMNet, we analyze four variants, corresponding to four
different choices for the GSM density f, see Eq. 4 and Table 1.

GSMNet training configuration. To ensure a fair comparison,
we adopt the same configuration as in [18]. We adopt the
same network architecture, which consists of a U-Net for
the concentration network gt and a MobileNetV3 Small for
the color-matrix network (ppg, on) (see Fig. 1). Our model
is trained for 100 epochs using the patches from centers
0, 1, and 2 of Camelyonl7. We use the ADAM optimizer
with an initial learning rate of 10~*. Following [18], we set
A = 1,7 = 0.05 and n = 0.3. During the first epoch, we
set 7 = 0.99 to help the network determine the correct stain
order. We also found it beneficial to set 7 = 0 for the first 50
epochs, as this allows the network to first learn the reference
matrix and then refine the reconstructions. After that, the
value of the 7 hyperparameter depends on the selected GSM
density, see Table 1. Due to space constraints, we omit the
corresponding ablation study.

Stain separation (WSSB) Classification (Camelyon17)

Method PSNR SSIM ACC Fl
BCDNet 24.2770.525 0.8650.010 0.8350.031 0.8030.044
GSMNet-sech  24.836¢0.047 0.8710.001 0.872¢.017 0.861¢.025
GSMNet-log 24.7480.123 0.8650.006 0.8510.034 0.8150.062
GSMNet-£1 24.7280.206 0.8700.004 0.851¢0.081 0.819¢.121
GSMNet-£o 24.799¢ 227 0.8630.001 0.8520.021 0.8270.029
TABLE 11

Stain separation and breast cancer classification results (mean and standard

deviation from three independent runs). All variants of the proposed model

exhibit superior performance to that of BCDNet. GSMNet-sech stands out
as the best-performing one.

B. Stain separation

The stain separation task evaluates whether a method can
accurately separate the contribution of each stain. To assess
this, we use the WSSB dataset, which provides ground-truth
stain separation. We use the Peak Signal to Noise Ratio
(PSNR) and the Structural Similarity Index Measure (SSIM)
as evaluation metrics. The results are presented in Table II
and Figure 2.

Improvement upon BCDNet. The results in Table II demon-
strate that incorporating a sparsity-promoting GSM prior en-
hances stain separation performance. Two variants of the
proposed model (sech and ¢;) outperform BCDNet in terms
of PSNR and SSIM, while the remaining two variants achieve
higher PSNR and comparable SSIM. Notably, BCDNet cur-
rently surpasses other DL-based methods [18]. As we will see
in Sec. IV-C, these improvements in stain separation translate
into even greater gains in the breast cancer classification task.

Closing the gap with analytical methods. Following [18], we
compare the proposed approach against non-amortized meth-
ods, considering inference time, see Figure 2. The proposed
GSMNet-sech is faster and separates better the stains than the
widely used MAC, RUI and ZHE methods. Although BKSVD,
HS, SAR, VAH outperform our method, their inference time
may become prohibitive in certain settings. For instance, VAH
requires over 5 seconds, while BKSVD, HS, and SAR require
over 7.5 seconds. In contrast, the proposed GSMNet produces
comparable estimations in just 0.75 seconds.

C. Breast cancer classification

We illustrate how concentration maps mitigate performance
degradation due to color variations. Following [18], we train
a VGGI19 classifier to predict whether an input patch is
cancerous. The training dataset consists of patches from
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centers {0,1,2,3} of Camelyonl7. Center 4, which exhibits
larger color differences, is reserved for testing. Class-balanced
patches were sampled from the annotated WSIs, yielding
approximately 107 - 103 training patches and 26 - 103 testing
patches. For each method, we extract concentration maps and
train the same classifier with identical initial weights for 50
epochs with the ADAM optimizer at an initial learning rate of
1073, Results are presented in Table II and Figure 2.

Improvement upon BCDNet. Table II also presents the
results of the proposed GSMNet and the baseline BCDNet,
evaluated based on the accuracy (ACC) and F1 scores. No-
tably, all four variants of the proposed GSMNet outperform
BCDNet by a considerable margin, with the sech variant
achieving the best performance. These improvements come
from the introduction of a novel prior on concentrations, which
are being used in this experiment for classification.

Reaching the performance of analytical methods. We
compare the proposed approach against non-amortized meth-
ods, considering inference time (see Figure 2). The proposed
GSMNet-sech sits in the top 3 in this task, achieving compara-
ble performance to BKSVD and ZHE, while requiring only a
fraction of the computational cost of other methods. Note that
the performance gap with BKSVD and ZHE is minimal (less
than 0.03 for both metrics). Notably, ZHE, which performed
the poorest in stain separation, ranks first for this task.

V. CONCLUSIONS

In this work, we introduced GSMNet, a DL-based model
for the BCD problem grounded in a Bayesian framework.
GSMNet integrates insights from classical analytical methods
through a novel GSM prior on the concentrations, promoting
sparsity in the concentration maps. To address the intractability
introduced by this prior, we developed an augmented model
that leverages the properties of GSM densities, resulting in an
equivalent formulation with a tractable training objective.

We evaluated the proposed method across two tasks — stain
separation and breast cancer classification — showing that
GSMNet achieves comparable performance to SOTA methods
while being significantly faster, making it suitable for large-
scale computational pathology applications.

Future work will explore the integration of additional priors,
further refinement of the model architecture, and the expansion
of the evaluation dataset.
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