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Abstract—Several approaches have been proposed to extend
the permutation entropy (PE) by incorporating amplitude in-
formation, which is typically discarded in the original PE
formulation. In this paper, we introduce a new PE variant that
explicitly accounts for amplitude information using the well-
established spectral properties of circulant determinants. This
circulant determinant-based PE (CDPE) effectively captures the
theoretical PE of sinusoids within the normalized frequency
range [0.01,0.2], outperforming existing amplitude-dependent
PE (ADPE) methods. Since this range aligns with the spec-
tral characteristics of surface electromyography (SEMG) signals
(5-500 Hz) sampled at 2048 Hz, the second key contribution of
our work is investigating the sensitivity of CDPE and existing
ADPE measures to excitation levels. To this end, these ADPE
methods were applied to simulated physiological high-density
sEMG (HDsEMG). HDSEMG represent a spatially distributed
acquisition of SEMG using a dense array of electrodes, enabling a
refined analysis of muscle electrical activity. Our findings provide
a deeper understanding of the applicability and robustness of
ADPE-based methods for HDSEMG signal analysis.

Index Terms—Amplitude-dependent Permutation entropy PE,
Ordinal patterns, Circulant determinant, High density surface
electromyogram HDsEMG.

I. INTRODUCTION

Surface electromyography (sSEMG) represents the electrical
activity of muscles recorded on the surface of the skin. SEMG
signals exhibit stochastic and deterministic characteristics,
influenced by the recruitment of motor units (MUs), where
each MU consists of a motoneuron and its associated muscle
fibers [1]. Since MU recruitment is related to force regulation
and fatigue dynamics, SEMG signals are widely used as a
non-invasive technique to assess these aspects of the human
neuromuscular system [2].

Among the methods used in SEMG signal analysis, permu-
tation entropy (PE) and its various extensions have emerged as
promising complexity measures [3]. PE performs a threshold-
free transformation of weakly nonstationary signals by ranking
successive samples in ascending order, efficiently encoding
them into sequences of ordinal patterns (OPs) [4]. The oc-
currence frequency of OPs serves as an estimate of their
probability distribution, enabling computation of the Shannon
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entropy. Since PE relies solely on OPs and ignores ampli-
tude information, several amplitude-dependent PE (ADPE)
extensions, such as weighted PE (WPE)[5], [6], [7], [8],
[9], amplitude-aware PE (AAPE) [10], [11], and dispersion
entropy (DispEn) [12], [13], have been proposed to incorpo-
rate amplitude information. The WPE assigns weights to the
occurrence frequency of each OP based on the variance of its
corresponding sample values. In contrast, the AAPE introduces
a tuning parameter to adjust the emphasis on mean amplitude
values and amplitude differences. The DispEn first maps the
signal data into a set of discrete classes using a predefined
probability distribution before applying OP analysis.

In the present paper, we propose a new PE variant that
effectively captures both OP and amplitude variations by
incorporating circulant determinants into the computation of
a weighted PE. This approach yields a more generalized,
robust, and parameter-free PE while offering a spectral energy-
based interpretation of the resulting complexity measure. The
second focus of our study is to evaluate the applicability and
robustness of the proposed CDPE along with existing ADPE
measures for the analysis of SEMG signals. Specifically, we
investigate the sensitivity of ADPE to excitation levels by
analysing high-density SEMG (HDsEMG) signals, which offer
a spatially detailed representation of muscle activity, allowing
for improved interpretation.

The paper is organized as follows. Section II reviews
the concept of PE and existing ADPE measures. Section
III presents the circulant determinant-based PE (CDPE). In
Section IV, a comparative study of these ADPE variants is
conducted using simulated physiological HDSEMG signals.
Finally, Section V concludes the paper and outlines future
research directions.

II. PE AND EXISTING AMPLITUDE-DEPENDENT PES

This section briefly revisits the PE and existing variants that
incorporate amplitude information.

A. Permutation Entropy

A threshold-free symbolic representation of a weakly sta-
tionary and uniformly sampled time series x; for ¢ =
0,1,...,N—1 can be achieved by ranking the values within
each set of d consecutive samples, =y, T¢41,...,Tt4qg—1- Lhe
permutation of the set {0,1,2,...,d—1} that sorts these
sample values in ascending order is called an ordinal pattern
(OP). For example, there are two possible OPs for d=2:
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1I,="01" if z; < 2441, and IIs="10" otherwise. The occurrence
frequency of each OP II can be estimated as:

_ {#t |{z¢, 451, ...,211q-1} of type IT}
N N—-d+1 ’

where # denotes the cardinality. The normalized PE is then
defined as [4]

H = —(log(d)) """ pm, log(pm,), )

P (1

where d! represents the total number of possible OPs of length
d, assuming that equal sample values are rare. Note that for
uncorrelated Gaussian noise, pr; = % which implies that PE
in (2) equals 1. Additionally, PE (2) has two key limitations:
ambiguity in handling equal values and the omission of
amplitude differences.

B. Weighted PE

Unlike PE, which only considers the ordinal aspect of the
data, Weighted PE (WPE) incorporates weights into the OP
probability (1), allowing it to distinguish between minor ampli-
tude fluctuations (potentially caused by noise) and significant
variations [5]. Consequently, the occurrence frequency of OP
(1) is modified as follows:

w

Zt|{1t’zt+1y---7mt+d—l} of type II t
pn = N1 , where 3)

t=1 Wi
1 d—1 1 d—1
—_\2 _
Wy = —— Ttqq — Tt and Jﬁt:*th i (4)
d _ 1 — ( +1i ) ? d — +

Note that for small d, (4) adopts the unbiased variance
estimator, unlike the original formulation [5].

C. Amplitude-Aware PE

AAPE differs from WPE by incorporating both absolute
mean and amplitude differences into the weight calculation
for OP probability. Consequently, the weight in (3) is defined
as [11]:

= =
wy = AE ZZ:; |a:t+i|+(1—A)m ; |Tt4i — Terioa], (5)

where A € [0,1] is a tuning parameter that balances the
influence of local mean and fluctuations.

D. Dispersion Entropy

DispEn is an ADPE that begins with mapping the original
time series {x; }4=0.1,..,y—1 onto ¢ classes to form a symbolic
time series {u;}¢=01,....N—1, Where u; € [1,¢]. This mapping
can be linear, by sorting all sample values and dividing
them into equal-sized classes, or nonlinear, using sigmoid
functions or the normal cumulative distribution. Each subse-
quence {u¢, Upyl,...,Ur+q—1) defines a dispersion pattern.
The occurrence frequency of a given pattern is obtained from

(1) by replacing x; with the symbolic time series u;. Finally,
the normalized DispEn is given by

—1
H= —(log(cd)) ani log(pr,), (©)

where ¢? represents the total number of possible dispersion
patterns.

III. CIRCULANT DETERMINANT-BASED PE

To account for both the amplitude information
and the spectral characteristics of each subsequence
{z¢,®141,...,Zt1a—1}, we propose a new PE variant where

the weights in (3) are redefined as the determinant of a
circulant matrix constructed from this subsequence:

Wy = ‘det(Xt)’ where @)
Tt Tt41 Tt42 Tt+d—1
Tt4d—1 Tt Ti41 Tt+d—2
Titd— Titd— T Tpid—=
X, = t+d—2 t+d—1 t t+d—3 | (8)
Tt41 Tt42 Tt43 v Tt

The determinant of this circulant matrix (8) is directly related
to the Discrete Fourier Transform (DFT) of its generating
vector [14] and can be expressed as:
d—1 d—1 v
Wy = H ’/\k|, with eigenvalues M\ = thﬂe*j %dlk,
k=0

i=0
©))

and j? = —1. This circulant determinant, and consequently
the weight assigned to each OP using (7) in combination
with (3), captures the spectral characteristics of the OP re-
lated subsequences. A well-distributed spectral content across
frequencies contributes to a high circulant determinant. In
contrast, structured patterns, redundancy, or periodicity in the
data may lead to a quasi-zero circulant determinant.

To avoid trivial cases where \g = Zf’;ol Z¢y; = 0, one can
calculate

d—1
wy = |det(Xt — a1)| = |)\0 — ad| H|)\k|,
k=1
where 1 is a d x d matrix filled with ones, and « is an offset, for
example, & = min({z;}4=0,1,.. ~—1). Next, three examples
illustrate CDPE’s performance.

(10)

A. CDPE for uncorrelated Gaussian noise

The theoretical CDPE (3) (7) of white Gaussian noise
(WGN) is 1 (see Appendix A for proof with d=3). Table
I presents the mean =+ standard deviation (STD) of ADPE
measures, averaged over 150 Monte Carlo (MC) runs with
N = 5000 samples. For d = 3 to 6, PE remains closest to
the theoretical value. While CDPE shows the highest STD
for d > 4, it performs similarly to AAPE and ImpPE. In
contrast, DispEn deteriorates for ¢ = d > 4. Figure 1a further
illustrates the ADPE behaviour for WGN, emphasizing the
impact of the sample size N. Although all ADPE methods
require sufficiently large N, AAPE and PE are the least
sensitive to small sample sizes.
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TABLE I: Mean = STD of ADPE measures for WGN (N =
5000, 150 MC runs)

ADPE d=3 d=14 d=5 d=256
Mean STD Mean STD Mean STD Mean STD

PE 0.9998 0.0002| 0.9994 0.0002| 0.9976 0.0004| 0.9888 0.0007
CDPE | 0.9997 0.0002| 0.9893 0.0023| 0.9786 0.0027| 0.9366 0.0056
ImpPE | 0.9997 0.0002| 0.9989 0.0004| 0.9964 0.0005| 0.9846 0.0009
AAPE | 0.9993 0.0003| 0.9990 0.0003| 0.9973 0.0005| 0.9885 0.0007
DispEn | 0.9993 0.0002| 0.9983 0.0004| 0.9956 0.0006| 0.9370 0.0052
(c=3)

DispEn | 0.9993 0.0002| 0.9955 0.0005| 0.9553 0.0014| 0.7854 0.0005
(c=d)

B. CDPE for Sinusoidal Signals

Figures 1b and c illustrate the ADPE performance on a
noise-free sinusoid x; = sin(2wvt), as a function of the
normalized frequency v. The sample size is N = |500/v].
As seen in these figures, the CDPE outperforms other ADPEs
for v € [0.01,0.2], , accurately capturing the theoretical PE
of a sinusoid: 0.3869 for d=3 and 0.2181 for d=4. This
superior performance is further validated in fig. 1d-1f, where
the sinusoid is embedded in white Gaussian noise (WGN) at
a signal-to-noise ratio (SNR) of 12 dB. The results, averaged
over 150 MC runs, confirm CDPE lower values and its greater
robustness to noise for v € [0.01,0.2].

Accurately capturing signal complexity in this frequency
range is essential for reliable SEMG interpretation. SEMG
signals span 5-500 Hz [15], corresponding to a normalized
frequency range of [0.0024, 0.2441] at F;=2048 Hz. Moreover,
SEMG recordings generally exhibit moderate SNR levels.

C. CDPE for Synthetic SEMG

The ADPEs are applied 1000 MC realizations of synthetic
SEMG signals generated using the model in [16]. This model
simulates filtered WGN with a known power spectral density
(PSD) controlled by two frequency parameters, f; and fy:

fuf?
(f2+ O+ 1)
As shown in fig. 2, CDPE consistently exhibits the lowest
values among the ADPEs, even when artificial noise is added.

PSD(f) x 1D

IV. APPLICATION TO HDSEMG SIGNALS

This section introduces the HDSEMG dataset and analyzes
the simulated HDSEMG signals using PE (1) (2), CDPE (2),
(3), (7) and DispEn (6) (c=3 classes and a normal cumulative
distribution). The goal is to examine ADPE sensitivity to
excitation levels, which can provide insights into motor unit
recruitment and neuromuscular activation.

A. Simulated HDsEMG Dataset

The synthetic HDSEMG signals were generated using MU
action potentials (MUAPs) estimated from HDSEMG record-
ings of slow, fatiguing contractions of the Abductor Pollicis
Brevis muscle in healthy subjects. A total of 124 MUs were
identified via the Convolution Kernel Compensation (CKC)
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Fig. 1: Comparison of ADPEs applied to: (a) WGN with vary-
ing sample size N and d=4. (b), (c) a pure tone sinusoid with
d=3 and 4, respectively. (d)-(f) pure tone sinusoid embedded
in additive WGN at SNR=12 dB with d=3, 4, and 5. Results
are averaged over 150 MC realizations. AAPE and DispEn are
computed using A=0.5, and ¢ = d, respectively.

algorithm [17], and their MUAPs were estimated via spike-
triggered averaging, using the identified MU discharges as
triggers. For each MU, its MUAPs were assigned to one of
36 discrete fatigue levels, allowing controlled MU fatigue in
synthetic HDSEMG signals. MUAPs were then combined with
the MU recruitment and firing modulation model from [18].

Five recordings were analysed with a ramp excitation pat-
tern (0% — 50% of maximum voluntary contraction (MVC))
at a constant 0% fatigue level. Each HDSsEMG channel was
50 seconds long (see fig. 3a), sampled at F;=2048 Hz, and
stored in a 2D matrix corresponding to the spatial layout of a
125 electrode grid. Each matrix cell contained N=100x F
samples that represent the SEMG voltage with added noise at
20 dB SNR.

B. Varying Excitation at Constant Fatigue Level

In this study, each HDSEMG signal was divided into two
non-overlapping consecutive windows, denoted as: W; and
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Fig. 2: CDPE and existing ADPEs applied to (a)-(b) simulated
SEMG signal using (11). (c) Simulated sSEMG embedded in an
additive WGN at SNR=20 dB. F;=2048 Hz, N=10000, d=4,
A=0.5 for AAPE and ¢ = 3 for DispEn.

W, which correspond to excitation levels of 0-30% MVC,
and 30-50% MVC, respectively. The mean power spectral
density (PSD) is shown in fig. 3b-c.

Noisy signal

100 |- Free-noise signal
Excitation level

©
E
i=y
w
50
100
150 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ : ;
o 5 10 15 20 25 30 35 40 45 50
Time (sec)
(a) sSEMG of channel (1,1)
4 8
35 —0-30% SNR=cc 7 ——0-30% SNR=00
—30-50% SNR=00 —30-50% SNR=co
3 0-30% SNR=20dB 6 0-30% SNR=20dB
— — = -30-50% SNR=20dB — — —-30-50% SNR=20dB
25 5 RN
o !
»n 2 04
a
15 3
\
1 2 W
0.5 1 / \§K
0 ¥” — 0

0 100 200 300 400 500 0 100 200 300 400 500
Frequency (Hz) Frequency (Hz)

(b) Mean PSD (c) Normalized PSD

Fig. 3: Synthetic HDSEMG signals [17]: (a) Ramp excitation
pattern superimposed on noisy and noise-free recordings . (b)
Mean PSD and (c¢) normalized PSD of windows W; and W5.

Table II presents the mean ADPE values averaged over the
12x5 HDsEMG matrix while fig. 4 provides a channel-wise
comparison of CDPE, DispEn, and PE for d=5 at SNR co and
12 dB. To quantify the relative change in complexity between
consecutive windows Wi and W5, we use the Normalized
Difference Index (NDI):

AiLs = (Hw, — Hw,) (Hw, + Hw,) "' (12)

In fig. 4, the NDI results are expressed as percentages and
displayed as a 12x5 matrix, reflecting the spatial electrode
grid. From fig. 4, the results obtained with DispEn at SNR
oo appear to align closely with physiological expectations.
Physiologically, as excitation increases from 0 to 30% MVC,
the spatial and temporal irregularity of SEMG signals increases

TABLE II: Mean CDPE, DispEn, and PE of HDSEMG record-
ings at different SNR and d values for W7 and Wo.

SNR = 20 dB SNR = oo

Method | d | W7: 0-30% | Wa: 30-50% | W1: 0-30% | Wa: 30-50%
CDPE | 3 0.5002 0.4777 0.4743 0.4742
4 0.3459 0.3318 0.3296 0.3288
5 0.3123 0.3031 0.3035 0.3011
DispEn | 3 0.6826 0.7175 0.6388 0.7144
4 0.6437 0.6748 0.5942 0.6711
5 0.6189 0.6478 0.5657 0.6437
PE 3 0.8221 0.7636 0.7397 0.7553
4 0.7383 0.6648 0.6364 0.6532
5 0.6964 0.6127 0.5828 0.5991

rapidly due to MU recruitment [18], [17]. For excitation levels
between 30 and 50% MVC, the complexity of sSEMG may
continue to increase slightly as MU recruitment approaches
saturation.

The NDI of DispEn values (see fig. 4.c and 4.d) for both
SNR conditions show the highest values. This is because
DispEn is highly sensitive to amplitude variations between W;
and W5, as evidenced by the PSD in fig. 2.b. In contrast, PE
is less affected by amplitude variations but is highly sensitive
to noise. Even moderate noise levels (e.g., 20 dB) can obscure
physiological changes across HDSEMG channels, making PE
less reliable in noisy conditions.

Unlike DispEn and PE, CDPE exhibits greater robustness
to noise in HDSEMG signals and can differentiate electrode
locations within the spatial matrix (see fig. 4.a and b). CDPE
captures variations in both the frequency content of the PSD
and the underlying signal structure. As shown in fig. 3.c, the
emergence of a low-frequency component in Wy may explain
the observed NDI variations in certain channels. Moreover,
the CDPE values reported in Table II are consistently lower
than those obtained from simulated SEMG signals modelled as
filtered Gaussian noise with a spectral band of 20-300 Hz (see
fig. 2.b-c). This suggests the presence of an inherent structure
in the recorded HDSEMG signals, distinguishing them from
correlated Gaussian noise.

V. CONCLUSIONS

We introduce Circulant Determinant-based PE (CDPE), a
novel permutation entropy method that incorporates ampli-
tude information via circulant determinant spectral properties.
Applied to simulated physiological HDSEMG signals under
controlled excitation levels without fatigue, CDPE effectively
captures complexity variations of sSEMG signals across mul-
tiple locations in the matrix representing the spatial electrode
locations. Unlike Dispersion Entropy (DispEn), which is more
sensitive to amplitude variation than the frequency content,
CDPE responds to both. These results highlight CDPE rele-
vance to SEMG analysis, with future work exploring fatigue
level effects.
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Fig. 4: Comparison between CDPE (top row), DispEn (middle
row), and PE (bottom row) with d = 5, applied to HDSEMG
signals. The NDI (12) is calculated using W; : 0-30% MVC
and Wy : 30-50% MVC for each channel acquired under
varying excitation at a constant fatigue level. The NDI results
are displayed as a 12 x 5 matrix in (%), corresponding to
the spatial electrode grid. The left column represents SNR oo,
while the right column represents SNR 20 dB.

APPENDIX

Consider a centred WGN x; with unit variance, and let
{ro, 71,72} be the sorted sequence of {x:,x1y1,T42}. To
evaluate the expected weight in (10) for d = 3, the determinant
det(X; — al) is expressed as:

det(X; — al) =73 + 73 + 15 — 3roriry

—3a(r2 + 72 + 12 —rory —rory — rirz). (13)
Given the joint probability density function of {r;}i—o 1 2:

fT077‘1,T2 (U’7 v, w) = 3!p(u)p(v)p(w)1(u§v§w)a (14)

where p(u) is the normal pdf, the following expected values
can be derived:

E[TQ] = —E[TO] = %, E[’I”l] = O,
Eff] =1~ 2, E[rg] = B[rd] =1+ ¥,
E[’f‘()’l“g] = _\/T§, E[Tl’f‘g = E[To’r‘l] = Lf,
E[r] =0, Erd] = —B[r{] = 775
E[T()Tl?"g] =

(15)

For an appropriate « ensuring det(X; — al) > 0 in (13), the
expected weight related to each OP is 9|a|. This result leads
to a uniform pattern distribution with occurrence frequency
p; = + and a normalized CDPE = 1.
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