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Abstract—Freezing of Gait (FoG) is one of the most debilitating
symptoms of Parkinson’s Disease (PD), severely impairing mo-
bility and increasing the risk of falls. Traditional FoG detection
methods predominantly rely on offline machine learning models,
limiting their feasibility for real-time monitoring and wearable
deployment. In this study, we present a lightweight and patient-
invariant FoG detection framework, specifically optimized for
real-time execution on resource-constrained hardware. Our ap-
proach utilizes Kullback-Leibler (KL) divergence to measure the
similarity between a new patient’s gait features and existing
cohort data, enabling an adaptive and generalizable detection
model. Additionally, we introduce a cohort selection strategy, cat-
egorizing subjects into Matched Clusters (MC) and Unmatched
Clusters (UC) to enhance model robustness while reducing
data dependency. Experimental evaluations on the Daphnet
dataset demonstrate that our patient-invariant model achieves
comparable classification accuracy, with an average Sensitivity
of .91 and Specificity of .80, while significantly reducing model
size. Furthermore, our approach effectively operates with a
single IMU sensor, making it a computationally efficient and
practical solution for continuous FoG assessment in real-world
applications.

Index Terms—Freezing of Gait (FoG), Parkinson’s Disease
(PD), IMU, Patient-Invariant Model, Real-Time FoG Assessment

I. INTRODUCTION

Parkinson’s Disease (PD) is a progressive neurodegenerative
disorder affecting millions worldwide, leading to severe motor
impairments and a decline in overall quality of life. Among
its most disabling symptoms is Freezing of Gait (FoG)—a
phenomenon where individuals suddenly lose the ability
to initiate or continue walking, often resulting in falls and
injuries. The unpredictable nature of FoG significantly
compromises patient safety and independence, making its
accurate assessment and management a critical aspect of
PD care. Since there is no cure for PD, treatment primarily
focuses on symptomatic management using a combination
of pharmacological interventions, physical therapy, and
assistive strategies. Levodopa and dopamine agonists are
commonly prescribed to alleviate motor symptoms, but
their effectiveness fluctuates over time, often leading to
motor complications such as dyskinesia and worsening FoG
episodes. Given these challenges, continuous monitoring
of FoG is crucial for personalized treatment adjustments,
optimizing medication schedules, and improving patient
outcomes. Currently, FoG assessment is primarily conducted

in clinical settings, where patients perform some predefined
tasks under medical supervision. While such assessments
provide valuable insights, they are inherently limited to
controlled environments and fail to capture the full range of
symptom variations experienced in daily life. FoG episodes
are highly context-dependent, influenced by environmental
factors, cognitive load, and emotional states, which cannot be
fully replicated in a clinical setting. Furthermore, infrequent
clinical visits lead to gaps in symptom tracking, delaying
necessary treatment adjustments and potentially increasing the
risk of falls. A home-based, real-time FoG detection system
would allow for continuous symptom monitoring, providing
clinicians with a more comprehensive understanding of FoG
progression. Additionally, real-time detection could enable
early intervention strategies, preventing severe episodes and
improving patient safety. Beyond passive monitoring, real-
time FoG detection has the potential to integrate with assistive
systems designed to prevent or mitigate FoG episodes.

With this context, wearable devices, particularly those
embedded with Inertial Measurement Unit (IMU) sensors,
offer a promising avenue for continuous and real-time
assessment of FoG in home environments. With their
compact and ergonomic design, IMUs enable unobtrusive
gait monitoring, facilitating uninterrupted symptom tracking
beyond clinical settings. In recent years, extensive research
has been conducted to develop FoG detection or prediction
methods utilizing machine learning [1], [2], [6] and deep
learning [3], [4] techniques, achieving high accuracy in
controlled settings. Bachlin et al. [1] pioneered the use
of IMU sensors, leveraging the Freezing Index feature
for FoG detection. Mazilu et al. [2] introduced a more
sophisticated machine learning framework, demonstrating
improved detection performance. A notable deep learning
approach was proposed by Rubén et al. [3], who implemented
a Convolutional Neural Network (CNN) and introduced
the Contextual Windows (CW) method, which incorporates
temporal dependencies by including features from adjacent
time windows. Additionally, Pham et al. [4] investigated
an unsupervised anomaly detection approach utilizing an
Adaptive Thresholding-based Anomaly Score Detector
(ASD), demonstrating its effectiveness in identifying FoG
events using IMU sensors. More recently, Ahmed et al. [5]
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developed a robust patient-independent model leveraging
a single ankle-mounted accelerometer sensor, achieving
substantial accuracy for real-time FoG detection.

While these methods demonstrate high classification per-
formance, they primarily operate in an offline setting, making
them unsuitable for real-time deployment on wearable hard-
ware. Additionally, most existing approaches rely on conven-
tional machine learning models, raising a critical question:
Which model type—patient-dependent, patient-invariant, or
hybrid—is best suited for real-world, real-time FoG detection
in wearable systems?
To address these limitations, this study introduces a
lightweight and deployable FoG detection system that utilizes
only a single IMU sensor, specifically designed for real-time
execution on wearable devices. The key contributions of this
work are as follows:

• Optimized Deployability: Development of a
computationally efficient model tailored for resource-
constrained wearable hardware, ensuring real-time
execution while maintaining high detection accuracy.

• Lightweight Patient-Invariant model construction:
Leveraging pre-existing cohort data to build a
generalizable FoG detection model, thereby minimizing
the dependency on extensive patient-specific training
data. This approach employs Kullback-Leibler (KL)
divergence to assess the similarity between the feature
distributions of new patients and existing cohorts,
ensuring optimal model adaptation for previously unseen
individuals.

By integrating these advancements, our proposed method-
ology bridges the gap between controlled laboratory-based
studies and real-world deployment, significantly enhancing
the feasibility of continuous and real-time FoG monitoring in
everyday settings.

II. METHODOLOGY

As previously stated, the central objective of this study is to
facilitate the real-world deployment of a FoG detection system.
Motivated by this goal, rather than developing the entire
algorithm from scratch, we have leveraged key components
from our prior research [5] to construct an optimized and
deployable system. The complete methodological framework
is outlined in the following section.

A. Preprocessing

The preprocessing stage encompasses signal segmentation,
annotation, and conditioning. The dataset is divided into fixed
time windows for further analysis. We have chosen a window
length of 4 seconds, with a 75% overlap to effectively capture
transitions between stages. Each signal window is labeled as
Freezing of Gait (FoG) if at least 30% of its samples are
classified as FoG; otherwise, it is categorized as Motion (M).

B. Dataset Description

In this research, we have utilized the Daphnet dataset, a
widely recognized benchmark for FoG detection. This dataset
comprises accelerometer recordings from three sensor place-
ments: shank (S) (just above the ankle), thigh (T), and lower
back (B) of PD patients. It includes 10 PD patients (7 males,
3 females) with a mean age of 66.5 ± 4.8 years. The dataset’s
acquisition protocol and detailed characteristics have been
extensively documented in previous studies, particularly by
Bachlin et al. [1].

C. Noise Reduction Using EWT

The gait pattern of PD patients is intricate, non-stationary,
and often affected by sporadic noise. To mitigate noise,
we employ the Empirical Wavelet Transform (EWT), which
adaptively constructs a wavelet filter bank based on the signal’s
spectral characteristics. The signal is then decomposed into
multiple modes, where noisy components are removed, and
only the relevant modes are retained to reconstruct a cleaner
signal. A comprehensive discussion on EWT-based mode
decomposition and signal reconstruction for FoG detection is
available in our previous research [1].

D. Feature Extraction

We have examined a range of statistical and physiological
features from existing literature. Based on our analysis, we
have selected six statistical features— Mean, Median, Stan-
dard Deviation, Max, Min, and Range — along with five
physiological features— Freezing Index (FI), FoG Power,
Motion Power, Mean Frequency, and Median Frequency—
as outlined in our previous study [1] for FoG prediction.
In total, 44 features are extracted at each time step from
3D accelerometer data, including the resultant acceleration
(ACCx, ACCy, ACCz, Resultant).

E. Feature Selection

The Recursive Feature Elimination (RFE) technique is ap-
plied to identify the most significant features, enhancing clas-
sifier performance and reducing computational complexity. As
outlined in Section II-D RFE is used to rank the 44 extracted
features. Experimental results indicate that selecting the top
15 features achieves optimal performance. A comprehensive
analysis is available in our previous research.

F. Development of a Lightweight Patient-Invariant Model

When a new patient is diagnosed with PD, deploying
a wearable-based system for FoG assessment possess
a significant challenge due to the dearth of sufficient
individualized data. A major hurdle is the difficulty in
obtaining a comprehensive dataset containing both motion
and FoG gait patterns. While motion data can be recorded
in clinical settings, capturing FoG episodes is impractical
since they are strongly influenced by environmental factors
and the patient’s cognitive state. As a result, employing a
patient-dependent model for FoG assessment at an early stage
is not feasible. Instead, we propose leveraging pre-existing
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cohort data to construct a patient-invariant model, which can
be gradually refined by incorporating the patient’s own data
over time.

Cohort Selection Using Similarity-Based Clustering With
this research framework, we hypothesize that a personalized
FoG detection model can be effectively built by incorporating
only those cohort patients whose gait feature distributions
closely match the new patient. To achieve this, the probability
distributions of extracted features from the new patient’s
motion data are compared against those of the cohort patients.
Only matching cohorts are integrated into the model, while
others are discarded. This selective approach is expected to
yield a more robust and efficient model for FoG detection and
assessment.

To validate our hypothesis, we utilized the Daphnet dataset,
as described in Section II-B. We selected only patients whose
data contained both Motion and FoG events, and from the
10 available patients, 8(S01, S02, S03, S05, S06, S07, S08,
S09) are chosen for analysis. Each patient was treated as
a new subject, with the assumption that only 10% of their
motion data was available for initial model generation. From
this limited motion data, features were extracted and their
probability distributions were compared with those of the ex-
isting dataset using Kullback-Leibler (KL) divergence, which
quantifies differences between probability distributions. The
objective of this approach is to establish two cohort clusters
based on feature similarity. Each feature comparison yields a
KL divergence value, which is then normalized between 0 and
1 using an exponential function to generate a Similarity Score
(SS), where values closer to 1 indicate a higher similarity
in gait patterns. The Mean Similarity Score (MSS) is then
computed by averaging all Similarity Scores (SS) for a given
cohort.
Based on this similarity assessment, patient cohorts are cate-
gorized into two distinct clusters:

1) Matched Cluster (MC) – Cohorts whose mean similarity
score exceeds an empirically chosen threshold, indicating
strong feature similarity with the new patient. Data from
these cohorts is incorporated into the patient-invariant
model.

2) Unmatched Cluster (UC) – Cohorts with a mean sim-
ilarity score below the threshold, suggesting dissimilar
gait patterns compared to the new patient.

A similarity matrix is generated for each patient in
tabular form to facilitate cohort selection. An example of
the similarity matrix for patient S02 is presented in Table
I. In this matrix, each row represents a different patient,
while each column corresponds to a specific gait feature
and its similarity score. The second-to-last column contains
the Mean Similarity Score (MSS), which represents the
overall similarity of a cohort’s gait pattern to that of the
new patient. If the MSS exceeds a predefined threshold,
the cohort’s data is incorporated into the model, ensuring
that only relevant gait patterns contribute to the final FoG

detection framework. Figure 1 illustrates the distribution of a
selected feature for the new patient compared with a patient
from the Matched Cluster (MC) cohort. Conversely, Figure 2
shows the distribution of the same feature for the new patient
in comparison with a patient from the Unmatched Cluster
(UC) cohort.

Incorporating Data from the Unmatched Cluster for
Model Generalization:
While the primary model is constructed using data from
the Matched Cluster (MC), incorporating a small fraction
of data from the Unmatched Cluster (UC) improves model
generalization. Relying exclusively on highly similar data
may result in overfitting, limiting the model’s adaptability
to real-world variations. Introducing a controlled portion
of UC data helps mitigate bias and enhances the model’s
robustness by exposing it to diverse gait characteristics.
To optimize performance while maintaining specificity, the
proportion of UC data is systematically adjusted. For a clearer
understanding of this model generation process, we have
outlined the approach in Algorithm 1.

Algorithm 1 Development of a Patient-Invariant Model
0: Input: New patient motion data Dn, Cohort dataset Dc,

Threshold τ
0: Output: Patient-invariant model M
0: Step 1: Feature Extraction
0: for each patient pi in Dc do
0: Extract gait features Fi from motion data
0: end for
0: Extract gait features Fn from new patient data
0: Select 10% of motion data from Fn for similarity compu-

tation
0: Step 2: Compute Similarity Matrix
0: for each cohort patient pi in Dc do
0: for each feature fj in Fn do
0: Compute KL divergence: DKL(F

j
n||F

j
i )

0: Normalize similarity score: Sij = exp(−DKL)
0: end for
0: Compute Mean Similarity Score (MSSi) as average of

Sij

0: end for
0: Step 3: Cohort Selection
0: for each cohort patient pi do
0: if MSSi ≥ τ then
0: Assign pi to Matched Cluster (MC)
0: else
0: Assign pi to Unmatched Cluster (UC)
0: end if
0: end for
0: Step 4: Model Construction
0: Train model M using data from MC
0: Augment with 10% of motion data from each UC patient

for generalization
0: Return optimized model MOD =0

1649



Fig. 1. Distribution of particular feature for both new patient and a patient
from MC cohort

Fig. 2. Distribution of particular feature for both new patient and a patient
from UC cohort

G. Classification Module

Due to the infrequent occurrence of FoG, the training data is
significantly imbalanced. To address this, we applied random
undersampling to the majority class, where surplus Motion
(M) data points are randomly removed to achieve a balanced
dataset. Although more sophisticated sampling techniques are
available, our study does not primarily focus on sampling
methods. Random undersampling is chosen for its simplicity,
effectiveness, and ability to reduce computational overhead.
FoG detection is framed as a binary classification problem,
with FoG (F) as the positive class and Motion (M) as the
negative class. For classification, we employ an ensemble
of bagged decision trees as a supervised machine learning
approach.

III. RESULTS & DISCUSSION

FoG detection performance is conventionally assessed
using Sensitivity

(
SN = TP

TP+FN

)
and Specificity(

SP = TN
TN+FP

)
, which are widely adopted in the

literature. SN quantifies the proportion of FoG windows
correctly identified by the model, whereas SP measures the
proportion of Motion windows accurately classified.

Given the focus of this study on real-world deployability,
performance evaluation extends beyond classification
accuracy to include model efficiency, particularly memory

consumption—a critical factor for deployment in resource-
constrained environments. We conducted a systematic analysis
to examine the trade-off between classification performance
and model size as the proportion of data from the Unmatched
Cluster (UC) was varied. The results, summarized in the
Table III, indicate that while incorporating additional UC
data does not yield significant improvements in classification
accuracy, it leads to a substantial increase in model size. This
expansion may negatively impact the feasibility of deploying
the model on low-power embedded systems.
To ensure robustness and generalizability, model performance
was evaluated using K=10 cross-validation, where SN
and SP values were averaged across ten validation folds.
Additionally, when the UC data proportion was set to 100%,
the model’s performance closely aligned with our previous
research findings, demonstrating consistency. Since prior
studies do not report model size, this evaluation is primarily
benchmarked against our earlier work.

To benchmark our proposed algorithm, we present a
comparative analysis against prior studies that utilized the
Daphnet dataset [1] with the patient-independent model.
Table II summarizes the results, highlighting key performance
metrics such as SN, SP, Window Size (WS), and Model Size.

San et al. [3] optimized their approach by selecting an
optimal probability threshold to maximize sensitivity, which,
however, led to a notable reduction in specificity. To ensure
a fair comparison, we applied the same thresholding strategy
and reported our results as OurAlgo-O, while OurAlgo-D
represents the model’s performance with the default classifier
threshold. Both models were developed using a patient-
invariant approach, incorporating 10% of data from the
Unmatched Cluster cohort for enhanced generalization.

Similarly, in our previous research Ahmed et al. [5],
we conducted a comparable experiment, reporting the results
as Nasim-O for the optimal model and Nasim-D for the
default classifier. As our focus is on developing a lightweight,
deployable system, we have also included model size as a
critical evaluation metric. The significantly reduced model
size of 0.451 MB in OurAlgo-D and OurAlgo-O highlights the
efficiency of our approach, ensuring comparable sensitivity
while achieving better specificity than both San et al. [3]
and optimal model(Nasim-O) of our previous work Ahmed
et al. [5]. Notably, OurAlgo-O and OurAlgo-D utilize only
a single IMU sensor (shank placement above the ankle), yet
their accuracy remains comparable to or even surpasses that
of other approaches that rely on data from all three sensors.
This further validates the effectiveness and feasibility of our
algorithm for real-world deployment.

Considering these findings, it is evident that our approach
significantly reduces model size while maintaining high
classification performance, making it a more practical
solution for real-time deployment.
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TABLE I
SIMILARITY MATRIX FOR PATIENT S02

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 MSS Cluster
Cohort

S01 0.47 0.23 0.78 0.67 0.90 0.73 0.75 0.87 0.49 0.35 0.68 0.42 0.65 0.90 0.90 0.63 MC

S03 0.38 0.19 0.09 0.74 0.77 0.62 0.63 0.46 0.75 0.95 0.58 0.10 0.49 0.03 0.08 0.45 UC

S05 0.05 0.16 0.21 0.81 0.73 0.61 0.88 0.91 0.61 0.30 0.66 0.04 0.61 0.08 0.09 0.45 UC

S06 0.06 0.22 0.13 0.67 0.57 0.82 0.98 0.75 0.49 0.42 0.01 0.14 0.69 0.04 0.34 0.42 UC

S07 0.02 0.35 0.11 0.62 0.14 0.74 0.48 0.68 0.19 0.67 0.12 0.11 0.91 0.07 0.36 0.37 UC

S08 0.59 0.33 0.88 0.75 0.94 0.54 0.79 0.29 0.15 0.89 0.35 0.41 0.38 0.90 0.74 0.61 MC

S09 0.61 0.38 0.84 0.24 0.51 0.64 0.86 0.84 0.49 0.95 0.89 0.43 0.27 0.59 0.65 0.62 MC

TABLE II
COMPARATIVE RESULTS WITH THE STATE OF THE WORK

SN SP WS Model Size In
MB

Bachlin [1] .73 .82 4
Mazilu [2] .66 .95 4
San [3] .95 .74 4
Nasim-O [5] .95 .70 4 1.3
Nasim-D [5] .83 .83 4 1.3
OurAlgo-D .81 .82 4 .451
OurAlgo-O .91 .80 4 .451

TABLE III
PERFORMANCE METRICS WITH DIFFERENT PERCENTAGE OF UNMATCHED

CLUSTER

OtherDataPercentage SN SP SIZE in MB

10 0.81 0.82 .451

30 .82 .82 .902

50 .82 .83 .921

70 .82 .83 1.1

90 .81 .83 1.3

100 .82 .83 1.4

IV. CONCLUSION

This study presents a real-time, patient-invariant FoG de-
tection framework optimized for wearable deployment. By
leveraging KL divergence-based cohort selection, the model
effectively adapts to new patients while maintaining high
detection accuracy and reduced model size for resource-
constrained devices. Incorporating only 10% of motion data
for similarity-based cohort selection, along with controlled

augmentation from the Unmatched Cluster (UC), enhances
generalization without compromising efficiency. Future work
will explore transfer learning to augment UC data, improving
model adaptability and robustness for unseen patients, further
enhancing real-world FoG detection.
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