
Enhancing Near-Infrared Spectroscopy Analysis
Using Ordinal Pattern Methods

Quentin Legros, Brieuc Léger, Pascal Auzou, Canan Ozsancak, Julien Bonnal and Meryem Jabloun

Abstract—This paper presents a novel approach for automatic
hemodynamic response detection in functional Near-Infrared
Spectroscopy (fNIRS) signals, a modern neuroimaging technique
that offers a portable and non-invasive solution for monitoring
brain activity in naturalistic settings. We address the challenges
posed by signal complexity and inter-subject variability by
leveraging two entropy-based methods, Permutation Entropy
(PE) and Phase Rectified Signal Average (PRSA), which focus on
the statistical properties of noise rather than the signal content
itself. Our experiments on raw, annotated fNIRS recordings data
demonstrate that these methods achieve performance comparable
to traditional machine learning algorithms, with the additional
advantage of requiring no prior training. Their versatility,
adaptability to various signal types, and significant reduction in
computational time make them particularly well-suited for real-
time applications in dynamic environments, further enhancing
the practical potential of fNIRS in cognitive and clinical research.

Index Terms—fNIRS signals, Signal processing, Ordinal
method, Machine Learning, Entropy

I. INTRODUCTION

Functional Near-Infrared Spectroscopy (fNIRS) is a non-
invasive neuroimaging technique that has gained significant
attention for its ability to monitor brain activity in real-
time [1], [2]. Unlike other neuroimaging techniques such as
Functional Magnetic Resonance Imaging (fMRI), Magnetoen-
cephalography (MEG), and Electroencephalography (EEG),
fNIRS uses near-infrared light to detect changes in hemoglobin
concentration, and offer a portable, cost-effective, and acces-
sible alternative. fNIRS has proven to be valuable in various
fields, including cognitive neuroscience, clinical rehabilitation,
and brain-computer interfaces [3], particularly in applications
requiring real-time monitoring.

Despite the availability of commercial software tools for
fNIRS signal analysis, current methodologies often fail to
fully capture the complexity of the data [4]. Many existing
methods rely on oversimplified assumptions or are limited by
preprocessing steps (such as denoising or bandpass filtering),
which may overlook important aspects of the signal [1], [4].
Moreover, the presence of confounding factors such as Mayer
waves, respiratory fluctuations, and cardiac interference further
complicates traditional approaches, often making it difficult
to separate meaningful hemodynamic responses from other
physiological signals or noise.
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While Machine Learning (ML) and Deep Learning (DL)
models have shown promising results in fNIRS signal analysis
[5], these methods require large datasets for training, which is
challenging due to the evolving nature of fNIRS technology
and advancements in sensor hardware [6]. Additionally, these
models often lack interpretability, making it difficult to under-
stand the underlying reasons for certain patterns in the data
[5], and the need for retraining with each hardware update
reduces their practicality for real-time applications [7].

To address these limitations, this paper presents an alter-
native approach for analyzing fNIRS signals that operates
directly on the raw intensity data, bypassing the need for
complex preprocessing steps. Our approach focuses on detect-
ing the presence or absence of hemodynamic responses using
ordinal pattern (OP)-based methods, which are less sensitive
to the challenges posed by noise and interference in the signal.
Specifically, we explore the use of Permutation Entropy (PE)
and Phase-Rectified Signal Averaging (PRSA) [8], [9], which
focus on the statistical properties of noise and randomness in
the data rather than specific signal features. These methods
offer advantages in terms of low computational cost, high
efficiency, and robustness to noise commonly present in fNIRS
signals.

The paper is structured as follows: Section II introduces
fNIRS signals and study objectives. The OP-based methods are
presented in Section III for PRSA, PE, and two other variants
of PE. Section IV defines the decision rules for detecting
hemodynamic responses. Section V provides a comparative
analysis, and Section VI summarizes the findings.

II. FUNCTIONAL NEAR-INFRARED SPECTROSCOPY

Functional Near-Infrared Spectroscopy (fNIRS) records the
intensity of two near-infrared wavelengths transmitted through
the scalp; absorption differences between oxygenated (HbO)
and deoxygenated (HbR) haemoglobin modulate this intensity
and thus reflect neural activation [1]. These variations are
influenced by the optical properties of the blood, primarily
the absorption characteristics of hemoglobin, which varies
depending on its oxygenation state [1]. The resulting changes
in HbO and HbR concentrations reflect neural activity [1].

The acquisition of fNIRS signals typically involves alternat-
ing between resting and active periods, providing information
on the dynamics of brain function. A key challenge in ana-
lyzing these signals is differentiating meaningful brain activity
from noise, particularly in detecting Hemodynamic Responses
(HR) that reflect neural activation [1].

Let x[n] denote the raw signal, representing the intensity
of light detected by the sensors at the discrete-time index
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Fig. 1. fNIRS signal processing. (Top) Raw fNIRS signal representing light
intensity variations over time. (Middle) Estimated HbO and HbR concen-
trations obtained from the raw signal using the modified Beer-Lambert law.
(Bottom) Block-averaged hemodynamic response computed across each cycle
of activity, improving signal clarity and reducing noise.

n. The raw signal x[n] is influenced by both the absorption
and scattering of light within brain tissue, as well as by the
source-detector geometry [1]. The standard approach involves
converting x[n] into optical density µ[n], typically using the
Beer-Lambert law [10]:

µ[n] = − log

(
x[n]

x0

)
, (1)

where x0 is the incident intensity of the light emitted by the
source. The optical density µ[n] emphasizes the attenuation
of light due to absorption and scattering as it travels through
biological tissues. The standard fNIRS pipeline computes HbO
and HbR from optical density, and often resort to preprocess-
ing steps such as bandpass filtering, baseline correction and
denoising [10]. However, the lack of standardization in these
steps introduces variability, compromising the interpretability
and reproducibility of the results [2], [5], [11].

In this paper, we focus exclusively on the raw signal
x[n] without additional assumptions, avoiding uncertainties
introduced by preprocessing HbO and HbR concentrations.
However, raw fNIRS data are often affected by noise, includ-
ing motion artifacts and sensor drift, posing a challenge for
accurate analysis. Addressing these noise-related challenges
is essential to ensure reliable interpretations of fNIRS signals
[6].

As shown in Fig 1, the raw signal x[n] is first obtained,
which represents light intensity variations over time (Top).
This signal is then converted into optical density µ[n], and
further processed to estimate the concentrations of oxygenated
(HbO) and deoxygenated hemoglobin (HbR), as shown in the
middle subplot of Fig. 1 (Middle). The final step involves
reducing noise and improving signal clarity through, for in-
stance, a block averaging process (see Fig. 1 Bottom).

Another challenge is automating fNIRS analysis to improve
efficiency and reduce the time experts spend on manually
assessing noisy data, allowing them to focus on critical aspects

[2]. An additional challenge, and not the least important,
is the lack of large, high-quality publicly available fNIRS
datasets, probably due to the early stage of fNIRS technology
and rapidly evolving hardware [4]. Currently, only a small
number of dataset is currently open access [12], [13]. This
challenge actually limits the recent advancements in ML
and DL, which, despite their potential to automate fNIRS
data analysis, have shown limited generalization and little
insight into the physiological processes driving changes in
hemoglobin concentrations [1]. Additionally, the frequent need
for model retraining to adapt to hardware changes makes
these approaches computationally expensive and impractical
for real-time applications.

III. ORDINAL PATTERN (OP)-BASED METHOD

This section focuses on OP-based methods, specifically
PRSA and PE variants, for processing raw fNIRS signals.
These methods effectively capture hidden dynamics within
noisy data while requiring minimal preprocessing and as-
sumptions. Their support for real-time processing also makes
them highly suitable for practical applications [2]. Building
on these techniques, we aim to develop an efficient, robust,
and fast approach for detecting hemodynamic responses in
fNIRS signals, thereby enhancing non-invasive brain activity
detection.

A. Permutation Entropy

Permutation Entropy (PE) is a complexity measure designed
to quantify the disorder or randomness in a signal by analyzing
its temporal structure1 [8]. Given a time series x[n], PE is
computed by embedding this signal into a higher-dimensional
phase space using d-dimensional subsequences with a time
delay τ : [

x[n], x[n+ τ ], . . . , x[n+ τ(d− 1)]

]
. (2)

The relative order of values within each subsequence defines
an ordinal pattern (OP), with a total of d! possible patterns.
For example, when d = 2 and τ = 0, there are two
possible OPs: 01 if x[n] < x[n + 1] and 10 otherwise.
The frequency of occurrence of each OP, denoted pi where
i = 1, 2, . . . , d!, is used to calculate the Shannon entropy.
Formally, the normalized PE is defined as:

HPE(d, τ) = − 1

log(d!)

d!∑
i=1

pi log(pi), (3)

ensuring that the PE values range from 0 (perfect order) to 1
(maximum disorder) [8].

The parameters d and τ play a crucial role in determining
the scale and sensitivity of the complexity measure. The
embedding dimension d should be chosen based on the com-
plexity of the signal, where higher dimensions can capture

1Recurrence plots also analyse temporal structure but rely on pairwise
distance calculations in the reconstructed phase space, leading to quadratic
complexity. Permutation-based entropies use only ordinal information and
therefore scale linearly with signal length, which is preferable for real-time
fNIRS.
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more intricate patterns. Typically, values between 2 and 10
are used, depending on the signal’s characteristics [8].

In practice, PE can be computed for different time scales or
embedding dimensions, providing a range of values that reflect
the signal’s complexity across these scales. For instance, as
the embedding dimension increases, the entropy will generally
increase, reflecting the increased complexity of the signal’s
structure. By varying both d and τ , one can obtain a more
nuanced understanding of the signal’s temporal dynamics.

PE and its extensions are valuable tools for analyzing
the complexity of physiological signals [14], as they detect
changes in their temporal structure. Figure 2 shows that PE
decreases as the Signal-to-Noise Ratio (SNR) increases, indi-
cating greater regularity of the signal. This ability to quantify
signal order makes PE a promising approach for detecting
meaningful brain activity amid noise, particularly in fNIRS
applications, where both periodic and irregular patterns can be
obscured by noise [15]. To improve the detection of hidden
structures in hemodynamic responses measured by fNIRS, we
propose hereafter two additional PE variants.

Slope Entropy (SE): quantifies the PE of the signal deriva-
tive, incorporating amplitude information that is typically dis-
carded in the original PE formulation [16]. SE is particularly
sensitive to rapid changes in the signal, capturing fast-varying
dynamics. Sharp transitions or fluctuations result in higher SE
values, indicating greater complexity, while smooth signals
with gradual changes yield lower SE values.

Refined Composite Downsampling (rcdPE): is an ex-
tension of PE that applies a downsampling procedure for
multiscaling [17]. It constructs downsampled signals with
different starting points, enhancing precision and sensitivity
to hidden dynamic variations. rcdPE provides a series of PE
values computed at different time scales, returning a vector of
size Mmax, where Mmax is the maximum time scale to analyze.
This multiresolution analysis helps capture both short-term and
long-term dynamics that might be missed in a standard PE
analysis. Additionally, rcdPE avoids artifact cross-correlation,
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Fig. 2. PE applied to a synthetic sinusoid with additive Gaussian noise. Top:
SNR forced to rise linearly from 0 dB to 10 dB. Middle: noisy signal, fs = 25
Hz. Bottom: non-normalised PE for successive windows (d = 3, τ = 5); PE
falls as SNR improves, illustrating increasing regularity.

a limitation present in other multiscale PE extensions, by
ensuring that the downsampling process is more robust.

Thus, PE, SE, and rcdPE not only provide a single value
of complexity but also return a series of values that depend
on the embedding dimension and time scale, allowing a more
detailed analysis of how complexity evolves across different
scales of the signal.

B. Phase-Rectified Signal Averaging

The Phase-Rectified Signal Averaging (PRSA) method was
introduced in [18] and can be viewed as an OP concept
combined with phase-synchronized averaging [9], [18]. While
PE-based metrics capture instantaneous complexity, PRSA
exploits phase-aligned averaging to boost SNR and reveal
slower, coherent haemodynamic responses that may be missed
by purely entropy-based measures. For classification we use
the variance of the PRSA curve, denoted σ2

PRSA, as a single
scalar feature. Its main steps are described in Algorithm 1.

Algorithm 1 PRSA Steps for fNIRS Signal Processing
1: Input: A raw signal x[n] and a delay τ .
2: Identify the most frequent OP of length d within x[n],

denoted as Π.
3: Locate M anchor points {ni}i=1:M where segments{

x[ni], . . . , x[ni + d− 1]
}

match OP type Π.
4: Extract M segments of length 2L+1 centered on anchor

points:

Si =
{
x[ni−L], x[ni−L+1], . . . , x[ni], . . . , x[ni+L]

}
.

5: Perform phase synchronization by aligning and averaging
the M segments:

XPRSA[k] =
1

M

M∑
i=1

x[ni + k], −L ≤ k ≤ L.

6: Output: The PRSA signal XPRSA[k].

Through phase-synchronized averaging, PRSA enhances struc-
tured signal components with phase coherence across multiple
signal segments while suppressing uncorrelated noise [9].
More precisely, consider the raw signal model: x[n] = s[n] +
ϵ[n], where s[n] is the signal of interest, and ϵ[n] represents
an i.i.d. noise. As the number of anchor points N increases,
PRSA reduces the noise component, improving the Signal-to-
Noise Ratio (SNR):

SNRPRSA ≈
E
[
s[n]2

]
1
ME

[
ϵ[n]2

] . (4)

This makes PRSA particularly attractive for fNIRS application,
where weak hemodynamic responses are often masked by
noise. Its ability to improve SNR is essential for accurate
brain activity analysis. Figure 3 illustrates PRSA applied to
a sinusoidal signal embedded in additive centered Gaussian
noise, where the SNR increases from 0 dB to 10 dB over
time. The noisy signal is shown in the upper plot, while the
PRSA curves for different SNR levels (0 dB, 5 dB and 10
dB) are displayed in the lower plot. As the SNR improves,
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the PRSA curve becomes smoother and more sinusoidal,
indicating effective noise suppression while preserving the
structured components of the signal.
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Fig. 3. PRSA with d = 2 and L = 50 applied to simulated noisy sinusoids
sampled at fs = 25Hz with increasing SNR. The first subplot shows a noisy
signal with an increasing SNR from 0 dB to 10 dB over time. The second
subplot presents PRSA curves for different SNR levels (0 dB, 5 dB, and 10
dB).

IV. DECISION RULES FOR DETECTING HEMODYNAMIC
RESPONSES

We define specific decision criteria for detecting HR asso-
ciated with cerebral activity. PRSA identifies a significant HR
when σ2

PRSA exceeds 0.05, distinguishing meaningful responses
from noise. For entropy-based methods, HR detection is based
on the mean entropy values over their respective vectors.

For PE, HR is detected when the entropy value is less
than or equal to 0.7, indicating a more ordered signal. For
SE, HR is detected when the mean entropy value across all
embedding dimensions is greater than or equal to 0.7, as
higher entropy reflects dynamic local changes. Similarly, for
rcdPE, HR is detected when the mean entropy value across
all downsampling scales is less than or equal to 0.7, capturing
complexity reduction at multiple scales.

These threshold values were empirically determined using
deterministic test signals embedded in additive Gaussian noise.

V. EXPERIMENTAL SETUP AND RESULTS

This section evaluates the considered OP-based methods2

for detecting the presence or absence of HR in fNIRS signals.

A. Experimental setup

fNIRS dataset - We use the publicly available NiReject
Benchmark dataset that consists of multi-participant
recordings of raw optical intensity measurements captured
using a multi-channel fNIRS system. Although extraction
of HbO and HbR concentrations is provided, our analysis
focuses exclusively on raw signals to evaluate the competing

2MATLAB code is freely available at https://github.com/QuentinLEGROS/
fNIRS2025

methods. Raw signals preserve all original information from
the fNIRS system, maintaining variations that may be lost
during preprocessing steps [2].

Hyper-parameter selection. Each method relies on a small
set of hyper-parameters. We tuned them by a five-fold subject-
wise cross-validation: in each fold 80 % of the subjects are
used for training and parameter tuning (grid search inside
this split) and the remaining 20 % for testing. The explored
ranges were d ∈ {2, . . . , 6} and τ ∈ {1, . . . , 10} for all PE-
based metrics, and L∈{16, 32, 48, 64} for PRSA. The values
maximising balanced accuracy are reported in Table I. A
sensitivity analysis shows that changing d or τ by ±1 around
these settings alters the final accuracy by < 1 percentage point,
indicating that the methods are not critically tuned.

TABLE I
HYPER-PARAMETERS RETAINED AFTER CROSS-VALIDATION.

Method d Other parameter Note
PE 2 τ = 1 –
SE 4 mmax = 4, τ = 1 amplitude info

rcdPE 3 Mmax = 4, τ = 1 multiscale
PRSA 4 L = 32 window length

Benchmark Methods - To assess the performance of the
OP-based methods in detecting the presence or absence of HR
in fNIRS signals, the classification accuracy using the decision
rules detailed in Section IV is used as a performance metric.
As benchmarks, we employ Support Vector Machines (SVM)
[6], [19] and Random Forest classifiers, both commonly used
methods for activity detection in fNIRS data [6], [19], [20].
The SVM is trained on 80% of the R22 subset of the
NiReject Benchmark dataset and tested on the remaining 20%.
Similarly, the Random Forest classifier is trained on the same
subset using 100 decision trees.

B. Results on fNIRS signals

The results are summarized in Table II. The results demon-

Method Accuracy Computational Time (sec)
PRSA 95.82% 3.20 · 10−3

PE 95.89% 2.12 · 10−4

SE 86.25% 2.11 · 10−4

rcdPE 95.89% 3.22 · 10−4

SVM (training) N/A 3.36
SVM (inference) 95.81% 0.28

Random Forest (training) N/A 12.03
Random Forest (inference) 96.14% 0.34

TABLE II
PERFORMANCE METRICS: ACCURACY (%) AND COMPUTATIONAL TIME

FOR DIFFERENT METHODS.

strate that almost all entropy-based methods (PE, rcdPE and
PRSA) achieve accuracy comparable to SVM and Random
Forest, confirming their effectiveness in detecting HRs. Among
the entropy–based methods, both PE and rcdPE achieved the
best accuracy (95.89%), underscoring their ability to distin-
guish meaningful signal content from noise. While SE also
performed well, its sensitivity to rapid signal variations may
explain minor accuracy discrepancies.
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Moreover, the lower performance of SE compared to PE
and rcdPE may be attributed to its sensitivity to amplitude
variations in addition to symbolic patterns. Since raw fNIRS
signals are often affected by physiological artifacts such as res-
piration and motion-induced intensity fluctuations, SE might
capture these unwanted variations rather than purely reflecting
the underlying hemodynamic response.

Note that inter-subject variability poses a challenge in
fNIRS-based classification, yet the stable performance of
entropy-based methods across the dataset suggests strong
generalization capabilities.

As shown in Table II, PE and SE require the least com-
putational time (2.1 × 10−4 sec per realization), whereas
rcdPE and PRSA demand slightly more processing power. By
contrast, SVM and Random Forest are significantly slower,
with Random Forest requiring 12.03 sec for training and 0.34
sec for inference, making it the most computationally intensive
approach.

Entropy-based methods offer an additional advantage over
SVM and Random Forest: they achieve similar accuracy with-
out requiring training or feature selection, making them well-
suited for real-time applications. Their robustness to noise and
artifacts further enhances their applicability, as they operate
directly on raw signals without extensive preprocessing.

VI. CONCLUSION

In this study, we presented entropy-based methods, specif-
ically PE, its variants and PRSA, for detecting hemodynamic
responses in fNIRS signals. Our results show that while Ran-
dom Forest achieves slightly higher accuracy, entropy-based
methods such as PE and rcdPE offer comparable performance.
These methods have the added advantage of requiring minimal
computational time, with PE and SE requiring only 2.1×10−4

sec per realization, making them highly efficient for real-time
applications.

Entropy-based methods do not require training or feature se-
lection, distinguishing them from traditional machine learning
models like SVM and Random Forest. This simplifies their de-
ployment, especially in dynamic environments where hardware
and signal properties may change over time. Their robustness
to noise and the fact that they operate directly on raw intensity
signals further increase their practical applicability, as they
bypass the need for extensive preprocessing.

Future work will focus on optimizing these methods for
even faster real-time processing and exploring adaptive thresh-
old selection to further improve accuracy across diverse fNIRS
signal conditions. Automating threshold selection is particu-
larly relevant given the variability of hemodynamic responses
and noise levels, ensuring better generalization across subjects
and experimental settings.
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