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Abstract—Deep learning has shown significant potential in
automating wound segmentation from medical images. However,
several models have been optimized in order to align with
basic validation metrics, such as the average Dice score or the
Intersection over Union (IoU), often with a focus on pixel-level
accuracy at the expense of generalization. This focus may result
in overlooking a model’s true ability to adapt to diverse and
complex cases. Moreover, since segmentation masks are inher-
ently ambiguous, a model might achieve a high Dice score while
failing to learn meaningful patterns—resulting in less coherent
segmentations despite slightly higher average accuracy. In this
study, we develop a segmentation model based on EfficientNetV2
with a standard U-Net-inspired decoder and train it on a carefully
curated dataset designed to provide high-quality examples with
clear segmentation patterns. Our approach achieves state-of-the-
art performance, with a Dice score reaching up to 94%. Using k-
fold cross-validation on 1,356 clinically validated segmentations,
we compare models selected by the best validation score at 100
epochs and the best training score at 30 and 100 epochs after
merging validation with training data. Our findings indicate that
deploying a validation dataset might not bring the expected
optimization. In contrast, manually limiting the number of
training epochs may play a crucial role in preserving meaningful
segmentation performance.

Index Terms—deep learning, medical image segmentation,
evaluation metrics, generalization, edge cases analysis, cross-
validation

I. INTRODUCTION

Wounds are disruptions to the body’s tissues caused by
trauma, surgery, or medical conditions. They are classified
as acute or chronic, each with distinct healing characteristics
[1]. Acute wounds—such as cuts, abrasions, lacerations, and
puncture wounds—typically heal within weeks without major
complications [2]. In contrast, chronic wounds, including dia-
betic, vascular, or pressure ulcers, persist beyond the expected
healing period [3], often due to factors like poor circulation,
diabetes, aging, or certain medications. These chronic wounds
significantly impact patients’ quality of life, leading to pain,
mobility limitations, and increased healthcare costs [4].

Accurate wound segmentation is crucial for assessing
wound size, monitoring healing, and guiding treatment. How-
ever, manual segmentation is time-consuming and prone to
inter-observer variability, making it inefficient in clinical prac-
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tice. This has led to growing interest in automating the process
to improve efficiency and consistency [5].

Early studies demonstrated the feasibility of using deep
learning, particularly convolutional neural networks (CNNs),
for wound segmentation. The authors of [6] applied CNNs to
diabetic foot ulcer (DFU) segmentation, achieving Dice scores
as high as 90%. Building on these promising results, CNN-
based architectures have since gained widespread adoption in
medical image analysis, particularly for wound segmentation.
Models like U-Net, designed for semantic segmentation tasks,
have achieved high accuracy in delineating wound boundaries.
In [5], the authors reported Dice scores exceeding 90% in
general wound segmentation, including DFU, pressure ulcers
(PU), and venous leg ulcers (VLU). In [7], they achieve a Dice
score of 92% using five-fold cross-validation on 2,372 images
of various wound types. While these results demonstrate high
performance, deep learning models often lack transparency
in the underlying learned concepts, which may lead to an
overemphasis on simplistic metrics [8].

Although high Dice scores are commonly viewed as in-
dicators of good generalization, optimizing for these metrics
alone can lead to unintended model behavior. The model
may latch onto spurious patterns that mainly fit the training
data, resulting in unexplainable gaps or incomplete shapes in
the resulting segmentation. Moreover, manual segmentation is
inherently uncertain and contains variability that the model
should not blindly replicate. As such, while optimizing for
the highest Dice score can help guide the model towards a
solid foundation, pushing for marginal improvements in the
score beyond a certain threshold may undermine the model’s
reliability and generalization.

This study aims to develop a model that achieves consis-
tent generalization while minimizing the occurrence of bad
segmentation cases. To this end, we design a model based on
EfficientNetV2 [9], pre-trained on the ImageNet-21k dataset!
[10]. Before fine-tuning, the dataset is carefully curated and
normalized (see Section II) to align with target concepts that

ImageNet-21k is a large-scale dataset containing approximately 14 million

images across 21,000 classes, serving as an extended version of the widely
used ImageNet-1k dataset.
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the model should focus on, and avoid the introduction of
poor-quality examples. We analyze the progression of poorly
segmented images using Dice score histograms and assess seg-
mentation performance through k-fold cross-validation [11].
The segmentations are reviewed individually, providing in-
sights into acceptable segmentation boundaries and offering a
deeper understanding of the model’s true learning capabilities.

II. DATASET

In this section, we describe the dataset used for training and
evaluating our model.

The images and masks used in this study were sourced
from a publicly available dataset on Kaggle [12], curated by
a platform user. The dataset comprises 2,760 images collected
from various public sources, with a portion manually annotated
by the creator. While it lacks clinical validation and detailed
information on the imaging device, it provides a valuable
resource to train deep learning models. 374 images come
from Medetic [13], 1,210 from the Foot Ulcer Segmentation
Challenge (FUSC) [6], and 1,176 from WSNet [14].

The dataset includes a variety of wounds and related in-
juries, such as dehisced abdominal wounds, thermal injuries,
foot wounds and ulcers, venous and arterial leg ulcers, malig-
nant wounds, meningococcal meningitis wounds, orthopedic
wounds, pressure ulcers, and pilonidal sinus wounds. Many
of these injuries contain fibrin, granulation, and callus tissue.
However, callus is particularly challenging for segmentation
tasks due to its visual similarity to skin, as shown in Fig. 1.
Consequently, it is excluded from the retained segmentation
masks, to prevent significant general performance degradation.

Fig. 1. Diabetic foot ulcer samples from the Chronic Wound (top) and
DFUTissue (bottom) datasets. The colors red, green, and blue correspond
to fibrin, granulation, and callus, respectively. Image adapted from [15].

We follow a rigorous selection protocol to ensure the
quality of the dataset. Images exhibiting any of the following
issues were excluded: blurriness, poor lighting, deformation,
obstruction by foreign objects, duplicate images or incorrect
segmentation. After filtering out invalid images, a wound care
specialist reviewed the remaining data to remove any mask that
did not adhere to the specified guidelines, further enhancing
the dataset’s credibility and robustness. In the end, 1,356
images were retained for training and evaluation, which could
be considered small for some CNNs. At the outset of this
study, the images are randomly partitioned into three subsets:
60% for training, 20% for validation, and 20% for testing.

III. BASELINE MODEL

We introduce the EfficientNetV2-inspired U-Net architec-
ture, adapted as the baseline model for our study.

A. Modeling

EfficientNetV2 was selected for its proven efficiency in
fast convergence and strong performance on benchmarks such
as ImageNet. Although originally designed for classification
tasks [16], we demonstrate that EfficientNetV2 can be effec-
tively repurposed for semantic segmentation by integrating
it into a U-Net-style architecture tailored to our domain-
specific dataset. Leveraging pre-trained weights, we fine-tune
the model as detailed in Section III-B, benefiting from the rich
spatial representations already learned. Among the available
encoder variants, Model S was selected”. The image process-
ing pipeline of our proposed adaptation, along with the number
of channels and spatial dimensions at the output of each block,
is illustrated in Fig. 2.

The encoder in EfficientNetV2-S has 20.33 million trainable
parameters and follows a pattern of eight blocks with increas-
ing complexity. The first block extracts low-level features,
while blocks 2-4 refine these features using a series of
fused multi-branch convolutional blocks. Blocks 5-7 employ
depthwise separable convolutions and squeeze-and-excitation
blocks, enhancing deep feature extraction by selectively re-
taining key activations. The final block outputs to a Global
Average Pooling (GAP) layer and Fully Connected Layers
(FCL), which are replaced by our decoder. EfficientNetV2 also
incorporates stochastic depth for better generalization.

2 After practical experiments, Model S yielded results similar to Model M
and Model L. Given that Model S has fewer parameters, it is faster to train
and lighter, making it our model of choice. The other variants were not tested,
as their number of parameters was considered insufficient for our task.
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Fig. 2. EfficientNetV2-S image processing pipeline with an example of a 512x512 input image; EB: Encoder Block; DB: Decoder Block.
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The decoder follows a U-Net-like structure, replacing the
GAP and FCL layers. Each upsampling step doubles the spa-
tial dimensions and halves the channel count, except in the first
and last decoder blocks, which adapt the number of channels.
After upsampling, a corresponding encoder feature map with
matching spatial dimensions is concatenated. A convolutional
layer processes these features before the next upsampling step,
preserving fine-grained spatial details and enhancing feature
propagation. Feature maps from encoder blocks 6, 4, 3, and
2 were selected for their high channel count and spatial
relevance. While we tested attention mechanisms for refining
skip connections, specifically using a gating mechanism with
element-wise multiplication [17], they did not significantly
improve performance.

B. Training Setup

Our dataset consists of 512x512 pixel images, which our
computational resources can process at full resolution. With a
24GB VRAM limit, using high-resolution images constrains
the maximum feasible batch size. Through experimentation,
comparing different resolutions and batch sizes showed that
preserving full resolution yields better results than increasing
batch size at the cost of image quality. To balance stability and
efficiency, we use a batch size of 19. We apply transformations
from the Albumentations library® to triple the training dataset
size by applying color manipulation, Gaussian noise and blur,
random rotations, shifts, and flips. We adopt the Ranger21
optimizer [18] for its smooth training dynamics, fast conver-
gence, and high accuracy, which were validated on our dataset,
where it consistently outperformed alternative optimizers. We
set the initial learning rate to 102 and Weight Decay to
10~%. To permit a fair comparison between the validation
and training datasets, we avoid any interventions that could
influence the model’s training, such as using a learning rate
scheduler based on the validation dataset.

We employ the Dice loss function [19], Dy, for training, as
it helps mitigate overfitting by emphasizing foreground regions
and maintaining gradient flow despite class imbalance. The
Dice loss is computed as:

B FP+ FN
 2IP+FP+FN +e¢

where TP, FP, and FN denote True Positives, False Positives,
and False Negatives, respectively, and € is a small constant,
set to 1079, to prevent division by zero.

Dy, D

IV. EXPERIMENTAL RESULTS

We first train the model for 100 epochs to gain insights into
its training and validation behavior. Fig. 3 illustrates stable
learning up to 20 to 30 epochs, during which the validation
curve closely aligns with the training curve, followed by the
emergence of overfitting signs. This suggests that training

3 Albumentations is an efficient Python library for image augmentation,
widely used in computer vision tasks. It offers a variety of transformations and
integrates well with deep learning frameworks like TensorFlow and PyTorch.
More information is available at: https://explore.albumentations.ai/.

beyond this point does not provide meaningful improvements
and may degrade the model’s generalization ability.

— Training loss

Validation loss

0.0

0 20 40 60 80 100
Epochs

Fig. 3. Training and validation dice loss across epochs.

Later, we compare the number of poorly segmented images
between the validation and test datasets. Then, we evaluate the
best-performing model across different performance metrics
and epoch counts. Using k-fold cross-validation, we compare
the computed Dice score with the performance metric across
folds. Following this, we manually examine each generated
mask to further support and validate the results.

A. Edge cases between training and validation

The validation dataset is crucial for assessing a model’s
performance on the test dataset while training, and in our
experiment, the average Dice score between validation and test
dataset remained consistently bounded. However, when ana-
lyzing edge cases to evaluate the model’s ability to generalize,
a weak correlation between validation and test segmentation
evolution is observed.

Fig. 4(a) presents a histogram of Dice scores below 85%,
to help visualize poorly segmented cases, for the model after
50 epochs of training. It reveals that at least three validation
images were segmented badly (Dice score below 15%), while
the test dataset maintained a minimum Dice score of 50%.
Fig. 4(b) displays the results for the model after an additional
epoch of training. While performance improved on the valida-
tion dataset, the test dataset exhibited two cases of undetected
segmentation (Dice score below 5%).

These observations indicate that while the mean Dice score
remains closely correlated across datasets, improvements in
generalization may benefit certain cases while negatively im-
pacting others. Consequently, we avoid further experiments
at this level, such as selecting models based on the highest
minimum Dice score observed in the validation dataset.

B. Cross-validation

The experiments in the previous subsection demonstrated
that, past a certain point, the validation dataset offers little
in guiding generalization for our model, as improvements in
some cases might come at the expense of others. Also, while it
can be useful for identifying the point before overfitting, in our
case, performances on the validation dataset fluctuates slightly
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(b) Histogram after 51 epochs.

Fig. 4. Comparison of Dice scores on edge cases for validation and test
datasets at two different epochs.

after 30 epochs (Fig. 3), leading to the potential selection of
a model with a marginally higher Dice score after overfitting,
despite poorer generalization. Since the best validation results
were often recorded towards the end of the training, using a
validation set helps little with delimitation of overfitting.

To investigate this, we evaluate two dataset partitioning
strategies: the original 60% training, 20% validation, and 20%
testing split, and an alternative approach that combines the
validation set with the training set in hopes of improving
generalization. These experiments were conducted over 100
epochs to evaluate whether using early stopping with a valida-
tion dataset to prevent overfitting compensates for the samples
excluded from training. Additionally, we evaluate an 80%
training split over 30 epochs to prevent overfitting. To ensure a
comprehensive analysis, we employ five-fold cross-validation,
generating predictions for each image in the dataset.

Table I compares the achieved test Dice scores across folds
based on the selected evaluation metric: the lowest average
Dice loss for validation or training. Despite having negligible
impact on results, the standard deviation (STD) is reported
for comparison across models. The model selected using the
validation dataset exhibits a higher mean Dice loss. Although
it is expected considering we prevent overfit and allocate less
resources for training, it brings a lower Dice score on the

test dataset. In contrast, incorporating the validation set into
training led to improvements across all measured parameters.
However, the most striking result is the comparison between
training over 30 versus 100 epochs. While the mean Dice loss
is higher at 30 epochs, the model achieved a slightly better
Dice score on the test dataset.

TABLE I
EVALUATION METRIC COMPARISON.

Test Dice score

93.05% £ 0.747
93.58% £ 0.573
93.72% =+ 0.566

Mean Dice loss
6.06% =+ 0.489
3.56% =+ 0.049
4.62% +0.014

Evaluation metric
Validation (100 epochs)
Training (100 epochs)
Training (30 epochs)

The outputs were then analyzed case by case, providing
qualitative assessments of each model’s strengths and weak-
nesses across 1,356 segmentations. Each segmentation was
assigned one of three labels:

o ’Good” segmentations are fully exploitable, even if minor
differences exist with the real mask (e.g., inclusion of
other wound-like areas or ambiguous zones such as
blurry/dark regions).

o “Uncertain” segmentations are mostly exploitable but
contain unexpected minor discrepancies, such as ad-
ditional understandable false positives (e.g., red nails
mistaken for injuries).

« ’Bad” segmentations do not capture the full segmentation
or fail to identify key features altogether, often resulting
in illogical or nonsensical outputs that do not align with
the expected mask.

Observations from the case-by-case analysis (Table II) con-
firm that training the model for fewer epochs resulted in
better generalization. Additionally, incorporating the validation
dataset into training improved performance on many examples,
reducing the number of “Bad” segmentations by half.

TABLE I
MANUAL OBSERVATION RESULTS.

. Studied metric (epoch)
Observation 76012 (100) k Train (30)
Good 1258 1268 1300
Uncertain 68 73 44
Bad 30 15 W

Among the models tested, the training-based model at
30 epochs provided the most reliable segmentations, with
logical delineations and minimal unexpected failures. Using
the training dataset only for 100 epochs resulted in more
logical segmentations than the model based on the validation
dataset, but still showed signs of overfitting, with segmentation
inconsistencies that were difficult to explain. The validation-
based model performed reasonably well, but exhibited notable
inconsistencies, especially in overlapping mask regions.

Each of these models demonstrated both strengths and
weaknesses across various common cases. However, they ex-
hibited specialization in certain types of injuries—one model
performed better on toe wounds, while another excelled in
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abdominal wound segmentation. This suggests that, rather than
designing a single model to generalize across all wound types,
better performance might be achieved by training specialized
models for different tissue types.

When comparing our results to those of other studies, it
is important to consider differences in model design, dataset
relevance, and evaluation protocols. Some works, referenced
in [5], report near-perfect Dice scores (around 99%) based
on limited and non-representative datasets, which are often
selected for visual demonstration purposes rather than for
assessing generalization capability. Others, like [20], present
inconsistent metrics—e.g., an IoU of 99.9% with a Dice score
of 93.4%—which is mathematically incompatible, suggesting
flaws in either methodology or reporting. Such studies lack
the rigor required for a valid comparison.

TABLE III
ACHIEVED DICE SCORE COMPARISON.
Images | Class Model Dice score (%) | Paper
1109 DFU MobileNetV2+CCL | 90.47 [6]
1200 Burn LinkNet-EffB1 91.70 [21]
2372 Diverse | LinkNet-EffB1 92.09 [7]
1356 Diverse | Ours 93.72 Ours

Table III compares our results with selected studies apply-
ing sufficiently rigorous and transparent methodologies. Our
model achieves a higher Dice score using a diverse dataset,
suggesting strong generalization and applicability across var-
ious classes.

V. DISCUSSION OF FINDINGS

Our experiments revealed that relying on early stopping
with the validation dataset may not yield the most effective
model for generalization, particularly when dealing with a
dataset considered small, as well as when the validation curve
converges to its minimum, as shown in Fig. 3. Integrating the
validation set into the training process, as shown in subsection
IV-B, led to improved performance.

Additionally, generalizing across diverse injury types led
to inconsistent results. The model struggled with conflicting
features such as tissue type, shape, and texture (Fig. 4), sug-
gesting that a single model may converge to suboptimal local
minima. Training multiple specialized models on narrower
injury categories could yield better performance and reduce
stagnation.

VI. CONCLUSION

We demonstrated that EfficientNetV2—originally designed
for image classification—can serve effectively as an encoder
in a U-Net-like architecture for medical image segmenta-
tion. Combined with a curated, high-quality dataset and the
Ranger21 optimizer, our approach achieved fast convergence
and strong segmentation performance, reaching a state-of-
the-art Dice score of 94%. Cross-validation and case-by-case
analysis provided insights into model behavior, questioning the
exclusive use of Dice loss during training. We also examined
the limited impact of a separate validation set on overfitting
prevention.
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