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Abstract—Decoding user perception in Virtual Reality (VR)
is crucial for enhancing immersion and understanding the user
experience. This study compared spatial filtering techniques for
enhancing acceleration-related ERPs from EEG data in VR.
Participants experienced controlled forward and backward accel-
erations within a VR environment while their brain activity was
recorded using a 14-electrode EEG system. We compare spatial
filtering methods—CSP, EMS, and xXDAWN—and demonstrate
that xDAWN most effectively separates these acceleration condi-
tions. These findings provide insights into the neural mechanisms
underlying acceleration perception in VR, paving the way for
improved VR experiences and a deeper understanding of the
brain processes associated with acceleration perception.

Index Terms—EEG, acceleration detection, spatial filter.

I. INTRODUCTION

Electroencephalography (EEG) offers a non-invasive win-
dow into brain activity with unparalleled temporal resolution,
making it an invaluable tool for studying dynamic neural
processes. Of particular interest in EEG research are Event
Related Potentials (ERPs), which are neuromarkers evoked
by an external event. However, raw EEG signals are often
obscured by noise, volume conduction, and cross-channel
correlations, presenting a significant challenge in isolating
meaningful neural activity. In our preceding work [1], we
found novel neural markers associated with acceleration and
its direction by analyzing specific electrodes.

Notably, we discovered a significant difference between
perceived forward and backward acceleration at the Cz elec-
trode signal, as well as through manual combinations of
multiple signals at neighboring electrodes. Building upon these
findings, this study investigates whether linear spatial filtering
methods can effectively discriminate acceleration-related EEG
signals. To this end, we employ a pipeline combining Inde-
pendent Component Analysis (ICA) [2] with established linear
spatial filtering techniques: Common Spatial Patterns (CSP)
[3], Effect-Matched Spatial filtering (EMS) [4], and XDAWN
[5]. By leveraging these filters, we seek to gain deeper insights
into the brain’s activation patterns during acceleration.

To achieve this goal, we first explore Common Spatial Pat-
terns (CSP), a technique widely used for extracting discrimina-
tive spatial filters that maximize variance differences between
two conditions in multi-sensor neural data [3]. CSP optimally
decomposes EEG signals into spatial components that best
separate experimental conditions by enhancing specific signal
variance in one condition while minimizing variance in the
other. It has been widely used in motor imagery classification,
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cognitive state decoding, and clinical applications such as
seizure detection [6]. It is particularly effective in motor
imagery tasks but is sensitive to inter-trial variability and noise.

Next, we consider Effect-Matched Spatial (EMS) filtering, a
technique that extracts a single representative time course from
multi-sensor neural recordings by dynamically adjusting a spa-
tial filter at each time point [4]. This approach maximizes the
signal-to-noise ratio (SNR) while preserving interpretability.
Using leave-one-out cross-validation, EMS filtering prevents
circularity and ensures unbiased extraction of experimental ef-
fects. Unlike PCA or ICA, which capture fixed spatial patterns,
EMS filtering directly tracks evolving neural responses. It has
been shown to improve single-trial detection and has been
applied successfully in cognitive and motor studies.

Finally, we examine the xXDAWN algorithm, a spatial fil-
tering technique developed to enhance ERPs, particularly
the P300 component, in EEG data [5]. In Brain-Computer
Interface (BCI) applications, such as the P300 speller paradigm
introduced by Farwell and Donchin [7], users focus on target
stimuli that elicit P300 responses, enabling communication
without muscular activity. However, P300 signals are often
obscured by background EEG activity and noise. The xDAWN
algorithm addresses this challenge by estimating spatial filters
that maximize the signal-to-signal-plus-noise ratio, effectively
enhancing the ERP component.

Despite the widespread adoption of these techniques in
different EEG contexts, their relative performance in the
context of VR-induced ERPs remains unexplored. This is
particularly relevant given the challenges of EEG in VR, such
as increased motion artifacts, nonstationary signal properties,
and the need for feature extraction methods that generalize
across varying stimulus conditions. Understanding how these
spatial filtering techniques compare in enhancing EEG features
during VR experiences is crucial for optimizing ERP-based
VR research and applications. Therefore, this study aims to
directly compare these filters in the context of EEG-based
VR acceleration perception. We evaluate their performance by
assessing (1) filter output separability via bootstrapping and (2)
multi-dimensional discriminability using Linear Discriminant
Analysis.

The remainder of this paper is structured as follows: sec-
tion II details the EEG data acquisition, experimental setup,
and preprocessing. section III presents the evaluation methods,
results, and discussion. section IV presents and discusses the
results.
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II. METHODOLOGY
A. Data Acquisition and Experimental Setup

EEG data was collected using OpenVibe 3.1.0 software and
a g.GAMMAcap2 EEG cap from g.tec medical engineering
GmbH®(Austria) with 15 electrodes positioned at FPz, Fz,
F1, F2, FCz, FC1, FC2, Cz, C1, C2, CPz, CP1, CP2, Pz and a
reference electrode placed on the right earlobe. The virtual en-
vironment was created using the Unity game engine software
(version 2020.3.11f1), featuring a virtual scene composed of
point clouds and a central crosshair.

Thirty healthy participants with normal or corrected to
normal vision took part in the experiment (18 men, 12 women
aged u = 26, min = 18, mazx = 56, 0 = 7.38). We extended
the experimental setup from our previous work [1]. Partici-
pants were exposed to a virtual environment (VE) simulating
forward and backward motion. Each 17-second trial consisted
of four phases. First, a 2-second Static phase established the
visual scene followed by a Slow speed phase, where the
environment moved at a constant 3m/s for a duration of
1 to 5 seconds, providing a baseline visual stimulus. Next,
the Acceleration phase involved a 1-second acceleration of
12m /s, either forward (FA) or backward (BA). The resulting
velocity was maintained for 2 seconds, followed by a return
to 3m/s. Finally, an End phase maintained the 3m/s speed
for a duration matching the slow speed phase before fading
out over 2 seconds.

The VE comprised a minimalist scene of white spheres
arranged cylindrically, with participants fixating on a central
red crosshair. Spheres appeared gradually from a distance
of 150 meters and were updated in real time based on the
simulated speed. Participants completed 78 trials, divided
into four blocks, with balanced conditions (forward/backward
accelerations and variable durations). This protocol was ap-
proved by the University of Lille’s ethics committee with
approval number 2021-526-S97.

B. Preprocessing

We first visually identify noisy channels' and exclude them
participant-wise. We implement a notch windowed FIR filter at
50 Hz to eliminate power line interference from the recordings.
Following ERP literature [8], data are filtered in the 0.3 to
10 Hz range using a 4th order IIR forward and backward
Butterworth filter and resampled to 50 Hz. Each trial is
divided into epochs starting from 0.5 seconds before the
acceleration onset and lasting until 1 second after it. Similarly
to noisy channels, epochs with overwhelming noise or eye
blink artifacts are removed.

We then use ICA [2] to remove artifacts generated by eye
blinks, manually identifying and removing noise and artifact
components from the data. Following ICA, we apply baseline
correction for each epoch from -0.4 to 0 seconds. These epochs
are stored and used for analysis.

In the following, tensors are denoted by underlined bold
uppercase letters (V'), matrices by bold uppercase letters (X)),
column vectors by bold lowercase letters (w), fixed scalars

Channels with excessive amplitude or overwhelming noise.

by cursive uppercase letters (C'), variable scalars by cursive
lowercase letters (f) and methods or conditions in typewriter
font (CSP, FA).

Let X € REXSXC denote the EEG data tensor, where
E is the number of epochs, S the number of samples per
epoch, and C' the number of channels. Each observation is a
channel vector x. . € R in an epoch e € [0..E — 1] for a
sample s € [0..S — 1]. We denote Frp and Es the number
of epochs associated with conditions FA and BA, respectively
(E = Era + Egyp). After preprocessing, we have Fry = 1127
corresponding to X ., and Ep, = 1113 corresponding to X,
ie. X, € RF=X9XC and X € RF=xSxC,

C. Spatial filtering and analysis

A spatial filter is defined as w € RY, implementing
a linear mapping R® — R, yielding the virtual electrode
output ve s = w;w. A set of F' spatial filters forms a
matrix W € RE*F yielding the virtual electrode vector
ves = ¢, W € RF. We denote the f-th spatial filter
from method M as wy s = (Wu). ;, where f € [1.F] and
M € {AVG,CSP,EMS, xDAWN}. The virtual electrode signal
for a given method M is then denoted as:

Vi = Xwy € REXS if F=1
V, = XW, € REXSXF jf p>1

We denote the virtual electrode corresponding to the f-th
spatial filter from method M as Vi, s = (V). ;. The average
spatial filter is defined as wavg = &1, where 1 € R” is the
vector of ones. Applied to each observation x. s, it computes
the mean across all channels. We apply the average and each
of the 3 following filters separately on the data.

1) Common Spatial Pattern: For our two-condition prob-
lem with data X, and X ,, CSP seeks to find F' spatial
filters, with F' € {1,2,4} in our implementation, which are a
subset in RE*¥ of the full filter matrix Wegp € RE*C that

maximizes the objective function J:

N
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where ¥, and g, are the spatial covariance matrices for the
FA and BA conditions [3]. This objective function is solved as
a generalized eigenvalue problem. We keep the top and bottom
eigenvectors because the largest and smallest eigenvalues
correspond to spatial filters that maximize variance for one
condition while minimizing it for the other, capturing the
most discriminative information. More CSP components are
selected by alternating between the first and last eigenvectors
as the number of filters, F, increases.

The projection of the EEG data onto these spatial filters
yields virtual electrodes with maximal discriminability be-
tween the two conditions. For visualization in Figure 1, we
use F' =1 to highlight the primary spatial pattern. For signal
discrimination in Figure 3, we evaluate separability using
F € {1,2,4} to assess the impact of additional filters. It is
important to note that CSP is optimally suited for oscillatory
or sustained power differences between conditions, rather than
short, phase-locked ERP differences.

J(WCSP) (1)
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2) Effect-Matched-Spatial Filtering: Unlike other spatial
filtering methods that focus on maximizing variance or specific
frequency components, EMS is designed to optimize the
extraction of experimental effects. The core principle of EMS
filtering is to project data, at every sampling time, onto a single
spatial filter that maximizes a specific objective function,
most commonly the difference between two experimental
conditions. EMS computes a separate spatial filter for each
sample of the data, denoted wgys,s. The optimization problem
is solved as follows:

E—1
Ze:o YeZe,s

E—1
[ Ze:() yewE,S”

where y,. is the label for epoch e, taking 1/Fr, if epoch e
belongs to condition FA, and —1/ Eg, if it belongs to condition
BA. Wgus,s € RY is equivalent to the normalized difference
between the mean response in condition FA and the mean
response in condition BA at each sample [4]. To obtain a single
filter for comparative visualization of all methods, we compute
the mean wgys = %Zf;ol Wyys,s € R€. For evaluating
separability, we use both the average filter wgys and one filter
per sample using Wxys 5.

3) xDAWN Spatial Filter: XDAWN utilizes the occurrence
of the stimuli to enhance the signal-to-noise ratio. Here we
apply xDAWN and create filters for each of the two conditions
(FA and BA) separately. XDAWN first estimates the ERP
responses, using least squares: A = (D'TD)"'DT X with
D € R%%2 a Toeplitz matrix encoding the stimulus onsets
corresponding to the two conditions. Then, it designs spatial
filters U that maximize the signal to signal-plus-noise ratio
where U € RE*C is the matrix of all spatial filters, of which
we keep a reduced filter matrix of size RC*¥

Finally, the xDawn filter, W, pauy, is estimated as:

Tr(UTATDTDAU)
Tr(UTX ' XU)

2

WEgMs,s =

Woann = arg méix (3)
where Tr(+) is the trace operator [5]. This optimization prob-
lem can be efficiently solved through QR decomposition and
singular value decomposition. Separability is computed using
F € {1,2,4} and visualization using F' = 1.

III. RESULTS & DISCUSSION
A. Evoked potentials

We analyze the impact of individual spatial filters on the
temporal evolution of signal amplitudes. When several filters
can be determined, we just keep the most significant (F' = 1),
and compute the 95% confidence interval across epochs. 95%
confidence intervals are shown around the response for each
condition FA and BA using a non-parametric bootstrapping
approach on 10,000 resamples on our data with replacement.
Looking at the average of all electrodes for both conditions
Figure 1 (a), we find a distinct signal consistent with the results
found in [1]. There is a different signal when looking at the
average of all electrodes in each condition FA and BA.

The CSP algorithm highlights only the component that
encodes the most variance (first component) and effectively

modulates the variance of the time series data, increasing
variance for the FA condition and decreasing it for the BA
condition, as seen in Figure 1 (b). However, this variance
maximization approach did not optimize ERP separability
because, in our paradigm, the main discriminative information
is a polarity difference in the phase-locked ERP around Cz, not
a sustained change in variance. CSP is designed to maximize
variance differences, and is thus suboptimal for brief, phase-
locked ERP components where opposite-polarity deflections
result in similar variances across conditions. The resulting
spatial filter predominantly isolated the signal from the Cz
electrode (Figure 1 (f)). This observation aligns with our
previous findings [1], where the Cz electrode was manually
found to represent the most pronounced amplitude difference
between the FA and BA conditions, suggesting that CSP,
in this instance, effectively and automatically identified the
electrode with the greatest discriminatory power, albeit not
necessarily leading to optimal ERP separability in terms of
signal difference.

The CSP-induced modulation of signal variance, specifically
the increase in variance for one condition and the decrease
for the other, manifests as a discernible difference in the
time-frequency representation (TFR). This suggests that CSP
effectively alters the frequency content of the signal in a
condition-dependent manner. Figure 2 shows the significant
clusters when looking at the difference of the TFR represen-
tation of FA and BA, with a stronger low frequency response
(under 6Hz) between 200ms to 600ms after stimulus onset
for FA. Time-frequency representations were computed using
Morlet wavelets across a logarithmically-spaced frequency
range from 1 to 10 Hz (50 frequency points), with the number
of cycles adaptively scaled to optimize temporal and frequency
resolution. The data were baseline-corrected using a log-ratio
transformation relative to the pre-stimulus interval (-0.45 to
-0.05 seconds).

To identify statistically significant differences between con-
ditions, we employ a cluster-based permutation approach with
100 permutations and a threshold value of 6.0 from the lit-
erature [9]. This non-parametric statistical method effectively
controls for multiple comparisons while taking into account
the temporal and spectral adjacency of the time-frequency
points. The analysis yields clusters of significant differences
(p < 0.05) between conditions, visualized in Figure 2 using
a bidirectional color map overlaid on the raw F-statistics,
providing a comprehensive view of both statistical significance
and effect directionality across the time-frequency space.

Looking at the result of the average EMS filter Vzys shown
in Figure 1(c), EMS appears to primarily invert the original
signal, maintaining a near-uniform negative value across all
electrodes, as shown in its filter in Figure 1 (g). It seems
that the EMS filter does not enhance condition separation by
differentially weighting electrodes, and assigns nearly equal
weight across channels and samples, resulting in a global in-
version. A likely explanation is that the unfiltered data already
exhibits a difference between conditions, the EMS filter did not
succeed in making this difference more pronounced. Because
Ways, s 1S estimated independently at every sample, the method
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Fig. 1: First line: average evoked responses in the two conditions FA and BA for signals filtered by (a) the mean filter yielding
Vave, (b) the first CSP filter yielding Vcsp 1, (c) the average EMS filter yielding Vzus, and (d) the first XDAWN filter yielding
Vipawmn,1. Shaded areas indicate the 95% confidence interval over all epochs (Fra = 1127, Fgy = 1113). Second line: spatial
representation of the filters for (e) The average filter wayg yielding responses in (a), (f) the first filter for CSP wesp 1, (g) the

average EMS filter wgys, (h) the first XDAWN filter wypaun,1-
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Fig. 2: (a) Difference (FA vs. BA) of the average time
frequency representation (TFR) of each condition. Significant
(p < 0.05) clusters are only present in (b), with red represent-
ing a stronger signal in that band for the FA condition.

does not enforce any relationship between successive filters.
When looking into individual time series, we observed that
small fluctuations can flip the sign of wgys,; from one sample
to the next, yielding an erratic sequence of spatial patterns.
This “sign-flipping” may cancel out slower ERP components
that can only be seen when the whole epoch is considered
jointly. Moreover, even when examining the sample-resolved
EMS filters, the spatial filter remains relatively uniform and
constant with negative values after t = 0.2s.

Finally, the xXDAWN seems to yield superior separability
between the FA and BA events compared to CSP and EMS

(Figure 1 (d)). The selected filter maximizes the SNR for
BA. The resulting signal exhibits a strong negative peak
throughout the observed epoch, and effectively minimizes the
FA amplitude. The spatial patterns associated with xDAWN
reveal a specific topographical weighting (Figure 1 (h)). The
selected filter is strongly weighted by a negative component
centered on the Cz electrode, with the surrounding electrodes
having positive weights, isolating the signal of interest and
effectively minimizing the other condition. This improved
performance is likely attributable to xXDAWN’s design, which
is specifically tailored to enhance the signal-to-noise ratio of
ERPs and maximize the discriminability between different
ERP conditions, unlike CSP and EMS which optimize for
variance or reconstruction error, respectively.

B. Condition-Separability Analysis

Filter performance is also assessed via a quantitative metric
of condition separability. We employ Linear Discriminant
Analysis (LDA) not to maximize absolute accuracy, but to
provide a standardized, interpretable metric for comparing the
separability achieved by each filtering method across different
numbers of filters and training epochs. This approach enables
quantitative evaluation of filter performance beyond visual
inspection, allowing comparison in higher-dimensional feature
spaces. We use a stratified k-fold cross-validation procedure
(k=5) to ensure robust and unbiased assessment. For each
spatial filter method (Average, CSP, xDAWN, and EMS), a
two-stage pipeline is implemented: first, the spatial filter is
fit to the training data and applied to the training set. A
LDA model is then fitted on this output. Then the testing
set is used for evaluating the filter. The stratification in the
cross-validation procedure preserved the proportion of samples
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Fig. 3: Condition separability (measured by LDA accuracy)
over number of training epochs for each spatial filter. The
Average filter is compared to CSP with F' € {1,2,4}, to
xDAWN with F' € {1,2,4} and to EMS with one filter per
sample or the average filter of all samples applied to the whole
time series (Wgys OF Wrys,s)-

for each condition across folds, ensuring balanced evaluation.
Curves of class separability were generated by incrementally
increasing the number of epochs used for model fitting in
ten equal steps, while maintaining the complete test set for
evaluation. Each filter is evaluated across multiple settings
as described in subsection II-C. Namely 1, 2 and F' = 4
filters for XxDAWN and CSP, and 1 or S filters for EMS. Class
separability results can be found in Figure 3.

The separability of features extracted by CSP yields signif-
icantly lower accuracy compared to EMS, xDAWN, and the
average. Among the tested methods, xDAWN achieved the
highest condition separability, a finding that corroborates the
enhanced ERP separability observed in the evoked potential
plots in Figure 1. xXDAWN performance improved significantly
when fitting more than one filter. This allows the method
to fit one filter per condition, and maximize the SNR for
each condition independently, resulting in more distinguish-
able features. These results provide further quantitative evi-
dence that xXDAWN effectively enhances the discriminability of
event-related potential signals, leading to improved separation
between the FA and BA conditions. EMS exhibited strong
performance, particularly with a lower number of epochs,
matching XDAWN and surpassing it for ' = 1. However,
it did not scale as effectively and plateaued as the filter is
applied to larger datasets.

CSP did not perform as well as the other filters. This might
be due to the fact that the effectiveness of CSP relies on the
assumption that the discriminative information between condi-
tions is primarily contained in the variance of the signals rather
than in their temporal patterns or phase relationships. This
makes CSP particularly well-suited for analyzing oscillatory
neural activity but potentially less effective for event-related
potentials where temporal dynamics are critical.

All three spatial filtering techniques demonstrate high com-
putational efficiency, with inference requiring only a matrix-
vector multiplication, making them highly suitable for real-
time applications. Furthermore, training these filters is also
feasible for online scenarios: processing all 2240 epochs on
an Apple M1 processor took 1.03 s for xDAWN, 1.10 s for
CSP, and 1.55 s for EMS.

IV. CONCLUSION

This study performed a systematic comparison of spatial
filtering techniques for enhancing acceleration-related ERPs
from EEG data in VR. xXDAWN outperformed CSP and EMS
in ERP class separability. While EMS was not the most
efficient method, future work could explore time smoothing
techniques to improve its temporal consistency. CSP isolated
the Cz electrode and modulated time-frequency representa-
tions, revealing enhanced low-frequency activity. XDAWN,
designed for ERP enhancement, yielded distinct spatial filters
and the best performance among all tested filters for our use
case. Future work could (i) evaluate non-linear methods to
improve performance and (ii) adapt the filters on a per-subject
and single-trial basis for online use.
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