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Abstract—This paper proposes a time-domain approach to
analyzing GRF (Ground Reaction Force) signals related to human
gait. The method uses the basic half-band FIR filters. It is aimed
at extracting features for recognizing the type of shoes worn by
a person that trod on a force plate. A basic feature can be the sign
of a sample of the first-order difference of the vertical GRF, and
higher-level features can be defined by considering series of same-
sign samples in the forepart of a force wave. The low-frequency
component of the difference provides more consistent values of
features of the same kind, while in the high-frequency component
one can find supplementary features related to minor oscillations.
This has been shown by exploring data, defining features and
testing their discriminatory powers, on a large set of about 11000
GRF measurements related to stilettos, sport and patent leather
shoes. The presented ideas can be used to develop classifiers able
to differentiate between stilettos and other footwear, soft- and
hard-sole shoes, shoes with and without heels.

Index Terms—footwear, shoe, stiletto, GRF, recognition,
ground reaction force, gait.

I. INTRODUCTION

Human gait is known to carry information about a person.
It can be analyzed so as to identify a walker [1], [2] or
her/his conditions. As to the latter, researchers attempted to
use gait observations to diagnose diseases, evaluate progress
in rehabilitation and training [3], [4]. A recently stated, less
investigated problem is footwear recognition [5]-[7].

A popular approach to gait evaluation is to measure ground
reaction force (GRF) signals. These signals are obtained by
using a force plate, placed on ground, so as humans can
put feet on it when walking. Such a device is a solid plate
witch sensors that convert tensions between it and ground into
electrical signals. These signals are scaled and combined so
as to represent forces between foot and ground [8].

Gait can also be evaluated by capturing and analyzing image
sequences of a walking person or only his/her leg [4]. In
surveillance cameras are only option, but in other applications
they have both pros and cons compared to force plates.
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In particular, footwear types can be recognized from images
[9], [10], but this meets obvious problems when shoe is on leg.
Firstly, it is difficult to position cameras or to direct people
so as to expose footwear. In particular, shoes can be hidden
behind a long skirt or dress. Secondly, even when shoe is
visible, it is challenging to extract features from an image
when background, leg skin, tights etc. are similar in color.

This paper considers a problem of footwear recognition
from only GRF measurements. We show that gait related to
stilettos can be distinguished from that of sport and patent
shoes. Moreover there are premises that other classes of shoes
can be recognized: at least hard- and soft-sole ones, and those
with and without heel.

The results of this research can be used to develop systems
that prevent stiletto wearers from entering areas where floor
can be damaged by these shoes. Another application can be
studies of popularity of footwear types.

This work proposes a novel method for feature extrac-
tion, which uses only vertical GRF (VGRF), neglecting
anterior-posterior and medio-lateral GRFs. Only the forepart of
a VGRF wave is analyzed, which spans from the foot strike to
the first main peak. The difference signal and its low-frequency
(LF) and high-frequency (HF) components are used as sources
of features. The sign of a sample of the difference is proposed
as a basic feature, while higher-level features can be defined by
considering series of same-sign samples. The low-frequency
component of the difference provides more consistent values
of features of the same kind, while in the high-frequency
component one can find supplementary features related to
minor oscillations.

Such decomposition of the VGRF signal is rather straight-
forward, but nobody has reported its use in the literature.
A novelty of our work is also in revealing that it is sufficient
or even advantageous to determine these signals by using the
basic half-band filters.

To the best of our knowledge, nobody has reported a similar
approach and so promising results. Many papers describe data
sets and studies of GRF signals related to particular shoes [1],
[11], [12], but do not provide insights how to recognize shoe
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type from gait, being only focused on explaining biomechanics
behind signals.

Only several papers discuss recognizing shoes that caused
a GREF signal [2], [S] In some works, researchers analyzed
data related to particular type of footwear, but this constraint
was imposed so as to made signals uniform.

The only exception is [5], in which shoe type was deter-
mined by using features that are computationally demanding.
The present paper is not an extension of [5]. It shows that
footwear can be recognized by using less data and simpler
hardware-software configuration. This has to be achieved by
deeper understanding GRF time series, in the light of signal
and filter theory [13].

This research was possible owing to the recent publication
of a unique, suitable set of measurements [14]. It contains
6510 records related to sport shoes, 1466 measurements of
stilettos and 2996 records related to patent leather shoes. So
large amount of data allows for drawing credible, generalized
conclusions about signals and algorithms.

It is as well important that the data set contains raw
measurements, which are sampled versions of analog outputs
of force plates. They have not been digitally filtered, so contain
high-frequency details. These details carry information related
to shoes, as it will be shown later in this paper.

II. SHOE-RELATED INFORMATION IN VERTICAL GRF

The biomechanics behind the gait cycle is well known and
described in many publications. Most of such studies consider
barefoot walking and symptoms of diseases, see e.g. [15].
Fewer works discuss effects of footwear [7], [16]. Exceptions
are publications in which GRFs are analysed from the point
of view of mathematics, information and signal theories [17],
as it will be done herein.

Figure 1 shows typical waves of the VGRF. This force is
called vertical because it is related to the interaction between
foot and ground in the gravity direction. The VGRF is zero
during the swing phase of gait, when the foot is moving
though air. Its M-like waveform reflects the stance phase,
during which the foot contacts the ground. This begins when
one puts the heel on the floor, and ends when he/she takes
toe off. Between, the VGRF increases to the first main peak,
temporarily decreases during the mid-stance phase, increases
again to the second main peak, and then decays. The two
peaks occur because the VGRF is an effect of both gravity
and muscle actions.

Stilettos, subject no. 006

Sport shoes, subject no. 006
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Fig. 1. Waves of vertical GRF of gait of young woman, wearing stilettos and
sport shoes.
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Fig. 2. Analysis of exemplary VGRF signals related to stilettos.
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Fig. 3. Analysis of exemplary VGRF signals related to sport shoes.
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Fig. 4. Analysis of exemplary VGREF signals related to patent leather shoes.
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In this research, we did not consider the two remaining
GRF forces, anterior-posterior and medio-lateral ones, which
act along and perpendicularly to the walking direction, respec-
tively, in the plane parallel to ground. It seems hardly possible
to extract from them features that supplement those related to
the VGRF. The former force is correlated with the VGRE,
while the latter is very weak and noisy.

Figure 1 shows VGRF waves of gait of one young woman.
The left-hand plot presents a dozen or so signals measured
when she worn stilettos. The right-hand plot is related to
her sport shoes. One can conclude that an entire waveform
of VGRF depends on footwear, but differences are especially
evident in the forepart.

For sport shoes, VGRFs steadily increases from zero to the
first peak, while stiletto-related waveforms contain sharp minor
peaks before the first main one. A bend just before the second
peak is also characteristics for the stilettos-related gait, but it
is a rather minor deviation from a smooth curve.

The same can be concluded after inspecting other measure-
ments from our data set. Some are shown in Figs. 2-4. In
each figure, the first plot shows entire wave of the VGRF. The
second plot shows the forepart of the wave.

From Figs. 2-4, a clear conclusion is that stiletto-related
VGRFs contain more high-frequency contents than measure-
ments of other shoes. However this contents can have various
forms. Oscillations as well as a single pulse can occur, and
their amplitudes and time extents can vary significantly.

On the other hand, high-frequency contents occur in GRF
measurements related to sport and patent shoes. For these
footwear, oscillations and pulses generally have lower ampli-
tudes but not always.

One could say that information specific for stilettos is
carried mainly by the high-frequency component of the VGRF.
Moreover this information is located before the first main
peak. The low-frequency component carries rather information
related to the identity and diseases of a walker.

Undoubtedly, some information about shoes is contained
also in the general shape of a VGRF wave. It seems possible
to find it in relative times and levels of the main peaks. Studies
of this remain as a subject for future research.

III. A METHOD FOR EXTRACTING BASIC FEATURES

The first our postulate is to analyze only the forepart of
the VGRF wave. We define it as samples from the foot strike
to the first peak of the VGRF wave. A common approach is
to associate the foot strike with the first sample that exceeds
a threshold, commonly 20 N, and is preceded by under-
threshold samples, which are related to the noise produced by
a force plate without a load. The first peak can be associated
with the first sample that occurs after the foot strike and is
followed by a considerably long series of lower values. The
considerable length, 100 samples in our experiments, for the
sampling rate of 1000 Hz, must be chosen so as to allow a
searching algorithm to neglect minor, local peaks, which are
followed by shorter series.
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Fig. 5. Values of (d(n) < 0) essential feature of 100 randomly selected
VGRF measurements related to stilettos.
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Fig. 6. Values of (d(n) < 0) essential feature of 100 randomly selected
VGRF measurements related to non-stiletto shoes.

The second our proposal is to focus attention on high-
frequency details of a VGRF wave by analyzing its first-order
difference, computed as follows:

d(n) = zp(n) —xp(n—1) (D

where z;(n) is the n-th sample of the finite-length auxiliary
signal that represents the forepart of the VGRF signal, denoted
as z(n) in the plots. The difference can be interpreted as the
result of high-pass filtering [13], which removes information
related to the general waveform, extracting details of short-
time changes, pulses and oscillations.

The difference is shown in the third plot in each of Figs. 2—
4, while its sign is the fifth plot. One can easily notice that
a measurement of non-stiletto shoes is usually characterized
by the existence of very long series of samples for which
(d(n) > 0). Such a series represents an increasing slope of the
VGRF wave. The existence of a series of samples for which
(d(n) < 0) means that the VGRF temporarily, considerably
decreased, and so a notable peak occurs in the slope from the
foot strike to the first main peak.

Footwear-specific patterns in the sign feature are even more
visible in Figs. 5 and 6. Each image corresponds to 100
randomly selected measurements of the VGREF, of a particular
type of shoes, sorted based on the length of the forepart.
In a row, pixels represent values of the basic feature for
samples of the forepart of a VGRF wave. A white pixel means
that d(n) >= 0 for the corresponding sample. Black pixel
means the opposite. The gray pixels represent samples after
the forepart, which are excluded from consideration.
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Fig. 7. Values of (I(n) < 0) basic feature of 100 randomly selected VGRF
measurements related to stilettos.
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Fig. 8. Values of (I(n) < 0) basic feature of 100 randomly selected VGRF
measurements related to non-stiletto shoes.
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Fig. 9. Values of (|h(n)| > 2) basic feature of 100 randomly selected VGRF
measurements related to stilettos.
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Fig. 10. Values of (|h(n)| > 2) basic feature of 100 randomly selected
VGRF measurements related to non-stiletto shoes.
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Fig. 11. Magnitude responses of filters used to analyze VGRF.

We propose to consider the sign of d(n) as only one basic
feature for recognizing shoes. Two more basic features can be
extracted from

I(n) = 3 (d(n) +d(n — 1)) @)

and
h(n) = 3 (d(n) — d(n — 1)) ©)

which are low- and high-frequency components of the first-
order difference of the VGRF. These signals are shown in the
fourth plot in Figs. 2—4.

The sign of I(n) is a feature essentially equivalent to that
of d(n), but its equal values appear in longer series. There are
fewer isolated samples whose signs are different from those
of neighbors. This can be noticed in Figs. 7 and 8, which are
analogous to Figs. 5 and 6.

On contrary, h(n) captures minor isolated peaks and longer
oscillations in d(n). A basic feature that reveals them is a result
of comparing the absolute value of h(n) to a threshold. Figs.
9 and 10 show that distributions of values of this feature are
specific for stilettos.

Equations (2) and (3) can be interpreted as a description of
complementary, half-band FIR filters [13]. Their magnitude
responses are shown in Fig. 11, together with that of the filter
related to (1). The filters are not very selective but satisfactorily
decompose signals. So simple filters have shortest possible
impulse responses and minimal group delays, so that output
is delayed by only one sample with respect to excitation. This
is very advantageous as a GRF forepart is a relatively short,
finite-length signal. For longer filters, a rapid change in VGRF
would be exhibited in features related to distant samples, and
boundary artifacts would contaminate features related to many
samples at the beginning and ending of the VGRF forepart.

IV. HIGHER-LEVEL FEATURES AND THEIR
DISCRIMINATORY POWERS

One can define higher-level features related to occurrence
of a specific pattern of values of a basic feature. Appearance
or absence of such a pattern in a measurement can be used to
evaluate the probability it is related to particular type of shoes.

Table I shows our proposals of higher-level features related
to the difference signal. Due to lack of space we were unable
to list features related to its LF and HF components.

The last row of Table I specifies no feature. It is to show the
total numbers of records related to stilettos and other shoes.
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TABLE I

PROPOSED HIGHER-LEVEL FEATURES AND THEIR DISCRIMINATORY POWERS. N DENOTES LENGTH (IN SAMPLES) OF THE FOREPART OF VGRF WAVE.

No. Higher-level feature of forepart of VGRF wave Number of satisfying measurements labeled as
stilettos non-stilettos
1. Begins with a series of > (10% - Ng) samples for which d(n) > 0 1.78% (26) 42.35% (4025)
2. Begins with a series of > (20% - Ng) samples for which d(n) > 0 0.14% (2) 23.05% (2191)
3. Contains a series of > (40% - Ng) samples for which d(n) > 0 15.17% (222) 61.97% (5890)
4, Contains a series of > (50% - Ng) samples for which d(n) > 0 5.13% (75) 36.57% (3476)
5. Contains a series of > (60% - Ng) samples for which d(n) > 0 2.05% (30) 23.87% (2269)
6. Contains two nonoverlapping series of > (20% - Ng) samples for which d(n) > 0 12.44% (182) 39.98% (3800)
7. Contains two nonoverlapping series of > (25% - Ng) samples for which d(n) > 0 2.94% (43) 26.19% (2489)
8. Contains two nonoverlapping series of > (30% - Ng) samples for which d(n) > 0 0.75% (11) 16.92% (1608)
9. Contains a series of > (5% - Ng) samples for which d(n) < 0 81.27% (1189) 21.35% (2029)
10. Contains a series of > (10% - Ng) samples for which d(n) < 0 51.67% (756) 4.57% (434)
1. Contains a series of > (15% - Ng) samples for which d(n) < 0 20.78% (304) 0.79% (75)
12. Contains a sample whose for which [d(n)] > 40 79.22% (1159) 18.50% (1758)
13. Contains a sample whose for which |d(n)| > 50 62.47% (914) 9.89% (940)
14. Contains a sample whose for which |d(n)| > 60 41.90% (613) 5.87% (558)
15. — (No constraints on head, so as to count all measurements of given type of shoes) 100% (1463) 100% (9504)

The rows from 12th to 14th are unrelated to the basic
features. They have to show that it is not useful to test the
absolute value of difference signal, d(n), against a threshold.
Threshold-based features well discriminate records of stilettos,
but they are also satisfied by many record of other footwear.

The two right-most columns show how many records,
related either to stilettos or other shoes, satisfy the condition
of a given row. The exact number of matching records is given
in parentheses. The primary information is the percentage of
all records related to a type of footwear.

We have presented distriminatory powers in this way, be-
cause the data imbalance is a problem in footwear recognition.
Measurements related to stilettos comprise 13% of the data set.
In a real-world application of our method, one could expect
a similar situation that only a fraction of persons wear stilettos.
There are known several approaches to the imbalance, and
it seems impossible to decide without experiments which of
them best suits this application.

V. CONCLUSION

Our results leave no doubt that it is possible to recognize
the type of shoes worn by a person by analyzing GRFs related
to his/her gait. We have shown how to extract features for this
purpose by using well-grounded, conceptually clear algorithms
of moderate demands on computations and memory.

It seems possible to achieve more then only to recognize
stilettos. Figs. 3 and 4 suggest that features and patterns can
be found that allow for distinguishing sport shoes from patent
leather shoes. On the other hand, Figs. 5-10 suggest that
subclasses of footwear can be determined that has not been
labeled: soft- and hard-sole shoes, those with and without heel,
various heels.

More higher-level features can be defined by considering
subpatterns and their relative positions in d(n), [(n), and h(n).
Alternatively, one can resample the forepart, so as to classify
signals that have as many samples, without considering the
relative position of a pattern.

Depending on feature properties, various types of classifier
can be used. Equal-length vectors of samples can be processed
by a nearest-neighbors classifier, while high-level features well

suit decision trees. Both kinds of data can be used to learn
a neural network.

Because of so wide perspectives of future research, we
confine ourselves to only presenting features in this paper.
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