
Riemannian Q-Functions for Policy Iteration in
Reinforcement Learning

Minh Vu, Konstantinos Slavakis
Department of Information and Communications, Institute of Science Tokyo, Japan

vu.d.a5c3@m.isct.ac.jp, slavakis@ict.eng.isct.ac.jp

Abstract—This paper establishes a novel role for Gaussian-
mixture models (GMMs) as functional approximators of Q-
function losses in reinforcement learning (RL). Unlike the existing
RL literature, where GMMs play their typical role as esti-
mates of probability density functions, GMMs approximate here
Q-function losses. The new Q-function approximators, coined
GMM-QFs, are incorporated in Bellman residuals to promote
a Riemannian-optimization task as a novel policy-evaluation step
in standard policy-iteration schemes. The paper demonstrates
how the hyperparameters (means and covariance matrices) of
the Gaussian kernels are learned from the data, opening thus the
door of RL to the powerful toolbox of Riemannian optimization.
Numerical tests show that with no use of experienced data, the
proposed design outperforms state-of-the-art methods, even deep
(D)RL methods which use experienced data, on benchmark RL
tasks.

Index Terms—Gaussian-mixture models, reinforcement learn-
ing, Q-functions, Riemannian manifold, optimization.

I. Introduction

Reinforcement learning (RL) [1, 2] is a machine learning
paradigm in which an “agent” interacts with an unknown
environment to identify an optimal policy that minimizes the
total costs of its “actions”. RL learns through trial and error
guided by the feedback data from environment, offers a math-
ematically sound framework for solving arduous sequential
decision problems in real-world applications, as in operations
research, dynamic control, data mining, and bioinformatics [1].

A central concept in RL is the value function, also known as
Q-function, which estimates the expected long-term costs that
an agent would suffer had it taken an action at a given state un-
der a particular policy. By Q-functions, RL strategies evaluate
the corresponding policies, then thereby identify the optimal
one. The classical Q-learning [3] and state-action-reward-state-
action (SARSA) [4] algorithms evaluate Q-functions by look-
up tables, populated by Q-function values at every possible
state-action pair. Although such approaches appear to be
successful in discrete-state-action RL, many practical problems
which involve very large, or even continuous state-action
spaces could render tabular RL methods computationally
intractable. To overcome this difficulty, algorithms built on
functional approximations (non-linear models) of Q-functions
have attracted considerable interest [1].

Functional approximations of Q-functions have a long his-
tory in RL. Classical kernel-based (KB)RL methods [5–
7] model Q-functions as elements of Banach spaces; usu-
ally, spaces comprising all essentially bounded functions. On

the other hand, temporal difference (TD) [8], least-squares
(LS)TD [9–11], Bellman-residual (BR) methods [12], as
well as very recent nonparametric designs [13–15], model
Q-functions as elements of user-defined reproducing kernel
Hilbert spaces (RKHSs) [16, 17] in a quest to exploit the
geometry and computational convenience of the associated
inner product and its reproducing property. Notwithstanding,
the number of design parameters of all of the aforementioned
kernel-based designs scale with the number of observed data,
which usually inflicts memory and computational bottlenecks
when operating in dynamic environments with time-varying
data distributions. Dimensionality reduction techniques have
been introduced to address this issue [11, 13], but reducing the
number of basis elements of the approximating subspace may
hinder the quality of the Q-functions estimates. Deep neural
networks (DNNs) have been also used as non-linear Q-function
approximators in the form of deep Q-networks (DQNs),
e.g., [18, 19]. Typically, DQN models require experienced
data [20] from past policies for their parameters to be learned,
and may even require re-training during online mode to learn
from data with probability density functions (PDFs) which are
different from those of the past data (experience-replay buffer).
Such requirements may yield large computational times and
complexity footprints, discouraging the application of DQNs
into online learning where lightweight operations and swift
adaptability to a dynamic environment are desired.

Aiming at a novel class of Q-function estimates with rich
approximating properties and with no need for past expe-
rienced data, this paper introduces the class of Gaussian-
mixture-model Q-functions (GMM-QFs), a weighted sum of
multivariate Gaussian kernels (functions) [21]. By leveraging
ability of GMMs to approximate complex functions with
limited number of parameters, GMM-QFs provide a flexible
but yet compact representation of Q-functions, therefore effect
dimensionality reduction, robustness to errorneous information
and swift adaptability to dynamic environments. Contrast
to the aforementioned literature of KBRL [5–12], where
the hyperparameters of the user-defined kernels are directly
parametrized by the observed data and are not considered
variables of learning tasks, here not only the weights but also
the hyperparameters of the Gaussian kernels are free to be
learned. GMMs have been already used in RL, but via their
typical role as estimates of PDFs: either of the joint PDF
p(Q, s, a) [22–25], where the Q-function Q, as well as state s
and action a are considered to be random variables (RVs),

1672ISBN: 978-9-46-459362-4 EUSIPCO 2025



or of the conditional PDF p(Q | s, a) [26]. This classical
usage of GMMs and its intimate connection with maximum-
likelihood estimation [27, 28] lead naturally to expectation-
maximization (EM) solutions [22–25]. In contrast, motivated
by the universal approximation properties of GMMs [29], this
paper departs from the typical GMM usage [22–26], employs
GMMs to model Q-functions directly, and not their PDFs,
follows the lines of Bellman-residual (BR) minimization [12,
15] to form and minimize a smooth objective function via
Riemannian optimization [30] and to exploit the underly-
ing Riemannian geometry [31] of the hyperparameter space.
GMMs and Riemannian optimization have been used to model
policy functions as PDFs [32], under the framework of policy
search [33]. The use of GMMs to model Q-functions directly
via Riemannian optimization seems to appear here for the first
time in the RL literature.

A fixed number of Gaussian kernels are used in GMM-
QFs to address the problem of an overgrowing model with the
number of data [5–12], effecting dimensionality reduction, and
providing low-computational load as well as the adaptability to
dynamic environments and robustness to erroneous informa-
tion. Numerical tests on benchmark control tasks demonstrate
that the advocated GMM-QFs outperform other state-of-the-art
RL schemes, even DRLs which require experienced data. Due
to limited space, definitions and arguments of Riemannian ge-
ometry, proofs, results on convergence, and further numerical
tests are deferred to the journal version of this manuscript.

II. The Class of GMM Q-Functions (GMM-QFs)
Let S ⊂ RD denote the continuous state space, with state

vector s ∈ S, for some D ∈ N∗ (N∗ is the set of all positive
integers). The usually discrete action space is denoted by A,
with action a ∈ A. An agent, currently at state s ∈ S, takes
an action a ∈ A and transits to a new state s′ ∈ S under
transition probability p(s′ | s, a) with an one-step loss g(s, a).
The Q-function Q(·, ·) : S× A → R : (s, a) 7→ Q(s, a) stands
for the long-term loss/cost that the agent will suffer/pay, if the
agent takes action a at state s. For convenience, the state-action
tuple z := (s, a) ∈ Z := S× A ⊂ RDz , where Dz ∈ N∗.

Following [1], consider the set of all mappings M := {µ(·) |
µ(·) : S → A : s 7→ µ(s)}. In other words, µ(s) denotes the
action that the agent will take at state s under µ. The set
of policies is defined as Π := MN := {µ0, µ1, . . . , µn, . . . |
µn ∈ M, n ∈ N}. A policy will be denoted by π ∈ Π.
Given µ ∈ M, a stationary policy πµ is defined as πµ :=
(µ, µ, . . . , µ, . . . ). It is customary for µ to denote also πµ.

Motivated by GMMs [21] and their universal approximation
properties [29], for a user-defined K ∈ N∗, GMM-QFs are
defined as the following class of functions:

Q :=
{
Q(z) :=

K∑
k=1

ξkG(z | mk,Ck)
∣∣ ξk ∈ R ,mk ∈ RDz ,

RDz×Dz 3 Ck is positive definite ,∀k = 1, . . . ,K
}
, (1)

where G(z | mk,Ck) := exp[−(z − mk)
ᵀC−1

k (z − mk)], with
mk and Ck being the hyperparameters of G(·), widely known

as the “mean” and “covariance matrix” of G(·), respectively,
while ᵀ stands for vector/matrix transposition. The parameter
space of GMM-QFs takes the form

M :=
{
Ω := (ξ1, . . . , ξK ,m1, . . . ,mK ,C1, . . . ,CK)

∣∣ ξk ∈ R ,

mk ∈ RDz ,Ck is positive definite ,∀k = 1, . . . ,K
}

= RK × RDz×K × (SDz
++)

K , (2)

where SDz
++ stands for the set of all Dz ×Dz positive-definite

matrices. Interestingly, M is a Riemannian manifold [30, 31]
because all of RK , RDz×K , and SDz

++ are.
To learn the “optimal” parameters from (2), BR minimiza-

tion [12, 15, 34–36] is employed. Motivation comes from the
classical Bellman mappings [1], which quantify the total loss
(= one-step loss + expected long-term loss) to be paid by the
agent, had action a been taken at state s. More specifically,
if B stands for the space of Q-functions, usually being the
Banach space of all essentially bounded functions [1], then
the classical Bellman mappings T �

µ , T
� : B → B : Q 7→

T �
µQ,T �Q are defined as [1]

(T �
µQ)(s, a) := g(s, a) + αEs′|(s,a)[Q(s′, µ(s′))] , (3a)

(T �Q)(s, a) := g(s, a) + αEs′|(s,a)[mina′∈A Q(s′, a′)] , (3b)

∀(s, a), where Es′|(s,a)[·] stands for the conditional expectation
operator with respect to the potentially next state s′ conditioned
on (s, a), and α ∈ [0, 1) is the discount factor. Mapping (3a)
refers to the case where the agent takes actions according to
the policy µ, while (3b) serves as a greedy variation of (3a).

Given mapping T : B → B, its fixed-point set FixT :=
{Q ∈ B | TQ = Q}. It is well-known that the fixed-point
sets FixT �

µ and FixT � play central roles in identifying optimal
policies which minimizes the total loss [1]. Usually, the dis-
count factor α ∈ [0, 1) to render T �

µ , T
� strict contractions [1,

37]; hence, FixT �
µ and FixT � become singletons. It is clear

from (3) that the computation of FixT �
µ and FixT � requires

the knowledge on the transition probabilities to be able to
compute the conditional expectation Es′|(s,a)[·]. However, in
most cases of practice, transition probabilities are unavailable
to the agent. To surmount this lack of information, designers
utilize models for Q-functions. This manuscript utilizes (1).

Motivated by the importance of fixed points of Bellman
mappings, and for the data samples Dµ := {(st, at, gt, s′t)}Tt=1,
for a number T of time instances under a stationary policy µ,
the corresponding BR minimization via a smooth objective
function Lµ(·) over the manifold M in (2) is used to identify
the desired fixed-point Q-functions for the policy µ:

min
Ω∈M

Lµ(Ω) :=
∑T

t=1

[
gt + α

∑K

k=1
ξkG(z′t | mk,Ck)

−
∑K

k=1
ξkG(zt | mk,Ck)

]2
, (4)

where z′t := (s′t, µ(s′t)). Task (4) is solved by Algorithm 2.
Albeit the similarity of (4) with standard BR minimiza-

tion [12, 15, 34–36], (4) is performed over a parameter space,
parametrized not only by the weights ξ, as in [12, 15, 34–36],

1673



Algorithm 1 Policy iteration by Riemannian optimization
1: Arbitrarily initialize Ω0 ∈ M, µ0 ∈ M.
2: while n ∈ N do
3: Policy evaluation By current policy µn, generate the dataset Dµn :=

{(st, at, gt, s′t)}Tt=1 .
4: Update Ωn+1 via Algorithm 2.
5: Given Ωn+1, compute Qn+1 ∈ Q via (1).
6: Policy improvement Update µn+1(s) := arg mina∈A Qn+1(s, a).
7: Increase n by one, go to Line 2.
8: end while

but also by the parameters {mk,Ck}Kk=1. In other words,
and for a fixed K, (4) provides more degrees of freedom
and a richer parameter space than the state-of-the-art BR-
minimization methods [12, 15, 34–36].

III. Policy iteration by Riemannian optimization

Following standard routes [1, 38], the classical policy-
iteration (PI) strategy is used in Algorithm 1 to identify opti-
mal policies. PI comprises two stages per iteration n: policy
evaluation and policy improvement. At policy evaluation, the
current policy is evaluated by the current Q-function estimate,
which represents the long-term cost/loss estimate that the agent
would suffer had the current policy been used to determine the
next state. At the policy-improvement stage, the agent uses the
obtained Q-function values to update the policy. Note that, this
paper considers finite action space, and Line 6 of Algorithm 1
can be performed via exhausted search on A.

Nevertheless, looking more closely at Line 4 of Algorithm 1,
the policy-evaluation stage is newly equipped here with a
Riemannian-optimization task: solve (4) by the line search
method of [30, §4.6.3]. To this end, the gradients of Lµ(·)
along the directions ξ, mk and Ck are required, and provided
by Proposition 1. Definitions of Riemannian concepts [30, 31],
derivations and proofs are skipped because of limited space.

In Algorithm 2, the Riemannian metric [30, 31] of (5) on M
is adopted: ∀Ω := (ξ,m1, . . . ,mK ,C1, . . . ,CK) ∈ M, and
∀Υi := (θi,µi1, . . . ,µiK ,Γi1, . . . ,ΓiK) ∈ TΩM, i = 1, 2,
where TΩM denotes the tangent space to M at Ω [30, 31],

〈Υ1 | Υ2〉Ω := θᵀ
1θ2 +

∑K

k=1
µᵀ

1kµ2k

+
∑K

k=1
〈Γ1k | Γ2k〉Ck

, (5)

where 〈· | ·〉Ck
can be any user-defined Riemannian metric of

SDz
++. Here, the Bures-Wasserstein (BW) metric [39] of (6) is

used, because of its excellent performance comparing to the
conventional affine-invariant metric [40] in numerical tests:
∀Ck ∈ SDz

++, and ∀Γik ∈ TCk
SDz
++, i = 1, 2,

〈Γ1k | Γ2k〉Ck
:= 〈Γ1k | Γ2k〉BW

Ck
:= 1

2 tr[LCk
(Γ1k)Γ2k] , (6)

where the Lyapunov operator LCk
(·) satisfies CkLCk

(Γik) +
LCk

(Γik)Ck = Γik [41]. Other Riemannian metrics on SDz
++,

such as the affine-invariant [40] or Log-Cholesky [42] ones
can also be used in (5). Due to limited space, results obtained
after employing those metrics will be reported elsewhere.

Algorithm 2 Solving (4)
1: Require: Sampled data Dµn := {(st, at, gt, s′t)}Tt=1; scalars ᾱ >

0, β ∈ (0, 1), σ ∈ (0, 1), the number of steps J , a Riemannian metric
〈· | ·〉·, and a retraction mapping R·(·) on M.

2: Ω(0) := Ωn.
3: for j = 0, 1, 2, . . . , J − 1 do
4: Ω(j) := (ξ(j),m(j)

1 , . . . ,m(j)
K ,C(j)

1 , . . . ,C(j)
K ).

5: By (7), compute:

∇Lµn (Ω
(j)) = (

∂Lµn
∂ξ

(Ω(j)), . . . ,
∂Lµn
∂mk

(Ω(j)), . . . ,
∂Lµn
∂Ck

(Ω(j)), . . . ).

6: Let Υ(j) := (θ(j),µ
(j)
1 , . . . ,µ

(j)
K ,Γ

(j)
1 , . . . ,Γ

(j)
K ) :=

−∇Lµn (Ω
(j)). Find the smallest Ma ∈ N∗ such that

Lµn (Ω
(j))−Lµn

(
RΩ(j) (ᾱβ

MaΥ(j))
)

≥ −σ〈∇Lµn (Ω
(j)) | ᾱβMaΥ(j)〉Ω(j) .

7: Define the step-size tAj := ᾱβMa .
8: Update Ω(j+1) := RΩ(j) (tAj Υ

(j)) via (8).
9: end for

10: Ωn+1 := Ω(J).

Proposition 1 (Computing gradients). Consider Ω(j) :=

(ξ(j),m(j)
1 , . . . ,m(j)

K ,C(j)
1 , . . . ,C(j)

K ) ∈ M (see Algorithm 2),
and its associated GMM-QF Q(j). Let also δt := gt +
αQ(j)(z′t)−Q(j)(zt). Then, the followings hold true.
(i) If the objective function in (4) is recast as Lµ(Ω

(j)) =
‖g + ∆ξ(j)‖2, where g := [g1, . . . , gT ]

ᵀ and ∆ is a
T ×K matrix with entries ∆tk := αG(z′t | m(j)

k ,C(j)
k )−

G(zt | m(j)
k ,C(j)

k ), then,
∂Lµ

∂ξ
(Ω(j)) = 2∆ᵀ(g +∆ξ(j)) . (7a)

(ii) Let dtk := α(z′t − m(j)
k )G(z′t | m(j)

k ,C(j)
k ) − (zt −

m(j)
k )G(zt | m(j)

k ,C(j)
k ). Then, ∀k = 1, . . . ,K,

∂Lµ

∂mk
(Ω(j)) =

∑T

t=1
4δtξ

(j)
k (C(j)

k )−1dtk . (7b)

(iii) Under the BW metric [39], ∀k = 1, . . . ,K,
∂Lµ

∂Ck
(Ω(j)) =

∑T

t=1
4δtξ

(j)
k [(C(j)

k )−1Btk + Btk(C(j)
k )−1]

∈ TC(j)
k

SDz
++ , (7c)

where Btk := α(z′t − m(j)
k )(z′t −

m(j)
k )ᵀG(z′t | m(j)

k ,C(j)
k ) − (zt − m(j)

k )(zt −
m(j)

k )ᵀG(zt | m(j)
k ,C(j)

k ).

To run the line search algorithm on M, the retraction
mapping RΩ [30], which maps an element of the
tangent space TΩM to an element in M is needed.
The most celebrated retraction is the Riemannian
exponential mapping [30, 31]. Motivated by this fact,
for Ω := (ξ,m1, . . . ,mK ,C1, . . . ,CK) ∈ M, for a
tangent vector Υ := (θ,µ1, . . . ,µK ,Γ1, . . . ,ΓK) ∈
TΩM, and for the step size tA > 0, met in
Algorithm 2, the retraction mapping RΩ(t

AΥ) =
(Rξ(t

Aθ), . . . , Rmk
(tAµk), . . . , RCk

(tAΓk), . . . ) is provided
by the following: ∀k ∈ {1, . . . ,K},

Rξ(t
Aθ) := ξ + tAθ , (8a)

1674



Rmk
(tAµk) := mk + tAµk , (8b)

RCk
(tAΓk) := expBW

Ck
(tAΓk) , (8c)

where, under the BW metric,

expBW
Ck

(tAΓk) := Ck + tAΓk + LCk
(tAΓk)Ck LCk

(tAΓk) .

IV. Numerical Tests
Two classical benchmark RL tasks with finite action space,

the Inverted Pendulum [43] and the Mountain Car [44],
are selected to validate the proposed Algorithm 1 against:
(i) Kernel-based least-squares policy iteration (KLSPI) [11],
which utilizes LSTD in RKHS; (ii) online Bellman residual
(OBR) [12]; (iii) DQN [18], (iv) dueling double (D)DQN [19]
which use DNNs to train the Q-functions (experienced data
are required), (v) proximal policy optimization (PPO) [45], a
notable policy-search method [33] which models the policy via
a DNN, and (vi) the GMM-based RL [25] via an online EM
algorithm (EM-GMMRL). The validation criterion (vertical
axes in Figures 1 and 2) measures the total loss the agent
suffers until it achieves the “goal” of the task when operating
under the current policy µn, with n being the iteration index
of Algorithm 1 as well as the coordinate of the horizontal axes.
Note that, this paper follows the framework in [1], using losses
instead of rewards [2] therefore, the target here is to minimize
the total loss. Results are averages from 100 independent tests.
Software code was written in Julia/Python.

The “inverted pendulum” [43] refers to the problem of
swinging up a pendulum from its lowest position to the upright
one, with limited number of torques. The state s := [θ, θ̇]ᵀ,
where θ ∈ [−π, π] is the angular position (θ = 0 corre-
sponds to the upright position), and θ̇ ∈ [−4, 4]s−1 is the
angular velocity. The action space is the set of torques A :=
{−5,−3, 0, 3, 5}N. The one-step loss is defined as g(s, a) :=
0, if θ = 0, and 1, if θ 6= 0. To collect Dµn

in Algorithm 1,
the pendulum starts from an angular position and explores
a number of actions under the policy µn. This exploration is
called an episode, and per iteration n in Algorithm 1, data Dµn

with T := (number of episodes) × (number of actions) =
20× 70 = 1400 are collected. KLSPI [11] and OBR [12] use
the Gaussian kernel with bandwidth σκ = 2, while their ALD
threshold is δALD = 0.01. KLSPI and OBR need T = 5000
to reach their “optimal” performance for the task at hand.
DQN [18] and dueling DDQN [19] use a fully-connected
neural network with 2 hidden layers of size 128, with batch
size of 64, and a replay buffer (experienced data) of size
1 × 105, while PPO [45] uses a memory of size 64. For
EM-GMMRL [25], T = 500, while its threshold to add new
Gaussian functions in the model is 10−4.

It can be seen from Figure 1a, that the proposed Algorithm 1
scores the best performance with no use of replay buffer (ex-
perienced data), unlike DQN [18], dueling DDQN [19] which
require a large replay buffer, and exhibits slower learning
speed and higher variance than GMM-QFs. PPO [45] seems to
need more data to reach the optimal performance. KLSPI [11]
underperforms, while OBR [12] and EM-GMMRL [25] fail
to score a satisfactory performance. Notice that KLSPI and

0 20 40 60 80 100
0

50

100

150

200

Iteration

To
ta

ll
os

s

(a) Inverted pendulum

20 40 60 80 100
0

25

50

75

100

Iteration

To
ta

ll
os

s

(b) Mountain car

Fig. 1: Results for benchmark datasets. Curve markers: Algorithm 1 with
K = 5: , K = 500: , KLSPI [11]: , OBR [12]: , DQN [18]: ,
EM-GMMRL [25]: , DDQN [19]: , PPO [45]: .

20 40 60 80 100

20

40

60

80

100

Iteration

To
ta

ll
os

s
Fig. 2: Effect of different K in Algorithm 1 for the setting of Figure 1b. Curve
markers: K = 20: , K = 50: , K = 200: . Curve markers for K = 5
and K = 500 follow those of Figure 1. The larger the K, the richer the
hyperparameter space M and the faster the agent learns through the feedback
from the environment, at the expense of increased computational complexity.

OBR are given more exploration data than Algorithm 1. It
is also worth noting here that EM algorithms are sensitive to
initialization [28], and that several initialization strategies were
tried in all of the numerical tests. It is also worth stressing here
that, the computational time of Algorithm 1 is usually less than
DRL schemes, since Algorithm 2 is operated on a manifold
of less parameters, while DRLs optimize over large number
of parameters in deep models. Due to limited of space, results
on computational time will be reported in the journal version.

“Mountain car” [44] refers to the task of accelerating a car
to reach the top of the hill from the bottom of a sinusoidal
valley, where the slope equation is given by y = sin(3x) in
the xy-plane, with x ∈ [−1.2, 0.6]. The state s := [x, v]ᵀ,
where the velocity of the car v ∈ [−0.07, 0.07]. The goal is
achieved whenever the car reaches a state in Sg := {[x, v]ᵀ |
x ≥ 0.5, v ≥ 0}. The one-step loss is defined as g(s, a) := 1,
if s /∈ Sg , while g(s, a) := 0, otherwise. With regards to
the data Dµn

in Algorithm 1, a strategy similar to that of
the inverted pendulum is used. More specifically, T = 1000
for Algorithm 1, while T = 20000 for KLSPI [11] and T =
1000 for OBR [12]. A Gaussian kernel with width of σκ = 0.1
is used for KLSPI [11] and OBR [12]. The implementation of
DRL schemes [18, 19, 45] is identical to one for the inverted-
pendulum case, while T = 100 for EM-GMMRL [25].

In Figure 1b, DQN [18] scores the best performance,
followed by PPO [45] and Algorithm 1. Note again here
that DQN, and dueling DDQN [19] use a large number of

1675



experienced data (size of replay buffer is 1×105), while Algo-
rithm 1 needs no experienced data to achieve the performance
of Figure 1b. Observe also that by increasing the number K
of Gaussians in (1), GMM-QFs reach the total-loss perfor-
mance of DQN in Figure 1b, at the expense of increased
computational complexity per iteration; see also Figure 2.
OBR [12] and EM-GMMRL [24] perform better here than
in Figure 1a, with the EM-GMMRL agent showing better
“learning abilities” than the OBR one in Figure 1b.

REFERENCES
[1] D. Bertsekas, Reinforcement Learning and Optimal Control. Belmont,

MA: Athena Scientific, 2019.
[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. Cambrigde, MA: The MIT Press, 2018.
[3] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,

pp. 279–292, 1992.
[4] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Convergence

results for single-step on-policy reinforcement-learning algorithms,”
Machine Learning, vol. 38, no. 3, pp. 287–308, 2000.

[5] D. Ormoneit and Ś. Sen, “Kernel-based reinforcement learning,”
Machine Learning, vol. 49, pp. 161–178, 2002.

[6] D. Ormoneit and P. Glynn, “Kernel-based reinforcement learning in
average-cost problems,” IEEE Transactions on Automatic Control,
vol. 47, no. 10, pp. 1624–1636, Oct. 2002.

[7] J. Bae, L. S. Giraldo, P. Chhatbar, J. Francis, J. Sanchez, and J.
Príncipe, “Stochastic kernel temporal difference for reinforcement
learning,” in Proc. IEEE MLSP, 2011, pp. 1–6. doi: 10.1109/MLSP.
2011.6064634.

[8] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Mach. Learn., vol. 3, no. 1, pp. 9–44, 1988. doi: 10.1023/A:
1022633531479.

[9] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J.
Mach. Learn. Res., vol. 4, pp. 1107–1149, Dec. 2003.

[10] A.-M. Farahmand, M. Ghavamzadeh, C. Szepesvári, and S. Mannor,
“Regularized policy iteration with nonparametric function spaces,” J.
Machine Learning Research, vol. 17, no. 1, pp. 4809–4874, 2016.

[11] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration
for reinforcement learning,” IEEE Transactions on Neural Networks,
vol. 18, no. 4, pp. 973–992, 2007. doi: 10.1109/TNN.2007.899161.

[12] W. Sun and J. A. Bagnell, “Online Bellman residual and temporal dif-
ference algorithms with predictive error guarantees,” in International
Joint Conference on Artificial Intelligence, 2016, pp. 4213–4217.

[13] M. Vu, Y. Akiyama, and K. Slavakis, “Dynamic selection of p-
norm in linear adaptive filtering via online kernel-based reinforcement
learning,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2023, pp. 1–5. doi: 10 . 1109 /
ICASSP49357.2023.10096825.

[14] Y. Akiyama and K. Slavakis, “Proximal Bellman mappings for rein-
forcement learning and their application to robust adaptive filtering,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2024, pp. 5855–5859. doi: 10.1109/ICASSP48485.
2024.10446701.

[15] Y. Akiyama, M. Vu, and K. Slavakis, “Nonparametric Bellman map-
pings for reinforcement learning: Application to robust adaptive filter-
ing,” IEEE Transactions on Signal Processing, vol. 72, pp. 5644–5658,
2024. doi: 10.1109/TSP.2024.3505266.

[16] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the
American Mathematical Society, vol. 68, no. 3, pp. 337–404, 1950.

[17] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra, and M. A. Riedmiller, “Playing Atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013. arXiv: 1312.5602.

[19] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” in Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, New
York, NY, USA: J. Machine Learning Research, 2016, pp. 1995–2003.

[20] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
UMI Order No. GAX93-22750, Ph.D. dissertation, USA, 1992.

[21] G. McLachlan and D. Peel, Finite Mixture Models. Wiley, 2000.
[22] M. Sato and S. Ishii, “Reinforcement learning based on on-line EM

algorithm,” in Advances in Neural Information Processing Systems,
vol. 11, MIT Press, 1998.

[23] Y. Engel, S. Mannor, and R. Meir, “Reinforcement learning with Gaus-
sian processes,” in International Conference on Machine Learning,
ser. ICML ’05, Bonn, Germany: Association for Computing Machinery,
2005, pp. 201–208. doi: 10.1145/1102351.1102377.

[24] A. Agostini and E. Celaya, “Reinforcement learning with a Gaussian
mixture model,” in International Joint Conference on Neural Networks
(IJCNN), 2010, pp. 1–8. doi: 10.1109/IJCNN.2010.5596306.

[25] A. Agostini and E. Celaya, “Online reinforcement learning using
a probability density estimation,” Neural Comput., vol. 29, no. 1,
pp. 220–246, Jan. 2017. doi: 10.1162/NECO_a_00906.

[26] Y. Choi, K. Lee, and S. Oh, “Distributional deep reinforcement learning
with a mixture of Gaussians,” in International Conference on Robotics
and Automation (ICRA), 2019, pp. 9791–9797. doi: 10.1109/ICRA.
2019.8793505.

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society: Series B, vol. 39, pp. 1–38, 1977.

[28] M. A. T. Figueiredo and A. K. Jain, “Unsupervised learning of finite
mixture models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 3, pp. 381–396, 2002. doi: 10 . 1109 / 34 .
990138.

[29] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free
Theory of Nonparametric Regression. 2002.

[30] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds. Princeton, NJ: Princeton University Press, 2008.

[31] J. W. Robbin and D. A. Salamon, Introduction to Differential Geom-
etry. Berlin: Springer, 2022.

[32] S. Wang, B. Zhu, C. Li, M. Wu, J. Zhang, W. Chu, and Y. Qi, “Rie-
mannian proximal policy optimization,” Computer and Information
Science, vol. 13, no. 3, pp. 1–93, Aug. 2020.

[33] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems, vol. 12, MIT
Press, 1999.

[34] Z. Qin, W. Li, and F. Janoos, “Sparse reinforcement learning via con-
vex optimization,” in International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 32, Bejing, China:
PMLR, Jun. 2014, pp. 424–432.

[35] S. Mahadevan, B. Liu, P. Thomas, W. Dabney, S. Giguere, N. Jacek,
I. Gemp, and J. Liu, Proximal reinforcement learning: A new theory of
sequential decision making in primal-dual spaces, 2014. arXiv: 1405.
6757 [cs.LG].

[36] B. Liu, I. Gemp, M. Ghavamzadeh, J. Liu, S. Mahadevan, and
M. Petrik, “Proximal gradient temporal difference learning: Stable
reinforcement learning with polynomial sample complexity,” J. Artif.
Int. Res., vol. 63, no. 1, pp. 461–494, Sep. 2018. doi: 10.1613/jair.1.
11251.

[37] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. New York: Springer, 2011.

[38] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances in
Neural Information Processing Systems, vol. 12, MIT Press, 1999.

[39] R. Bhatia, T. Jain, and Y. Lim, “On the Bures–Wasserstein distance be-
tween positive definite matrices,” Expositiones Mathematicae, vol. 37,
no. 2, pp. 165–191, 2019.

[40] X. Pennec, S. Sommer, and T. Fletcher, Riemannian Geometric Statis-
tics in Medical Image Analysis. San Diego, CA: Academic Press, 2019.

[41] R. Bobiti and M. Lazar, “A sampling approach to finding Lyapunov
functions for nonlinear discrete-time systems,” in European Control
Conference (ECC), 2016, pp. 561–566. doi: 10.1109/ECC.2016.7810
344.

[42] R. Bhatia, Positive Definite Matrices. Princeton, NJ: Princeton Univer-
sity Press, 2007.

[43] K. Doya, “Reinforcement learning in continuous time and space,”
Neural Computation, vol. 12, no. 1, pp. 219–245, 2000. doi: 10.1162/
089976600300015961.

[44] A. W. Moore, “Efficient memory-based learning for robot control,”
University of Cambridge, Tech. Rep., 1990.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017. arXiv: 1707.06347.

1676


