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Abstract—This paper contributes a novel approach to learn-
ing the dynamic patterns of multiple vehicles moving on a
2-lane road and performing interactions between them. The
proposed data-driven, hierarchical, and self-aware approach,
called coupled generalized dynamic Bayesian network (C-GDBN),
learns from 3D LiDAR sensor observations. A separate GDBN
model is learned from the generalized states (GSs), applying
an unsupervised growing neural gas (GNG) approach for each
vehicle. Then, a higher hierarchy with the global dictionary
is formed, which allows the coupling interaction between the
learned GDBN models. A coupled Markov jump particle filter
(C-MJPF) is proposed during the testing phase, which allows
making the inference on the optimum generative model. Our
scheme performs better under known and unknown situations
in terms of both low and high-level predictions and anomaly
detections, which consequently meet the explainable challenges
in the current intelligent approaches.

Index Terms—Coupled Generalized Dynamic Bayesian Net-
work (C-GDBN), 3D LiDAR, Self-Awareness, Autonomous Sys-
tems

I. INTRODUCTION

With the rapid development of vehicular sensing-based
intelligence, an increasing number of proprioceptive and
exteroceptive sensors are being seamlessly integrated into
vehicles, enhancing their efficiency, sensing capability, and
robustness [1], [2]. These could also be integrated with phys-
iological sensors to improve the safety and well-being of
drivers [3], [4]. Compared to various vehicle sensors such
as GPS (poor indoors), Camera (complex depth estimation),
Ultrasonic (short range), RaDAR (low resolution), and Infrared
(sensitive to lighting), LiDAR performs better with high-
resolution 3D mapping, accurate depth sensing, perceiving a
complete 360-degree view as well as detecting tiny objects of
the environment [5]–[7]. Taking these features into account,
many research problems are investigated in the literature
considering LiDAR sensors, such as object detection and
tracking [8], occlusion forecasting [9], localization [10], and
place recognition [11].

Continuous vehicle tracking and detection remain challeng-
ing for autonomous agents due to missing sensor observations.
This anomalous situation often occurs when sensors are ob-
structed by other physical objects, provide unclear and noisy
data, malfunction, or operate under harsh weather conditions.
However, by harnessing the advanced capabilities of artificial

intelligence (AI), deep learning (DL), and machine learning
(ML), together with the use of prior sensor information,
dynamic abnormal behaviors can be predicted and detected,
allowing proactive measures to address these challenges [12].

Most of the existing AI techniques developed to predict
this type of abnormal behavior using LiDAR sensors are
characterized by a black-box nature, high computational com-
plexity, dependence on large amounts of supervised data, and
a lack of self-awareness or explainable capabilities [12], [13].
In contrast, probabilistic reasoning, hierarchical, and data-
driven approaches support adaptive learning, offer explainable
features by modeling transitions and uncertainties from hidden
nodes, and facilitate multisensor fusion [14].

In light of the aforementioned discussions, we are inspired
to develop a probabilistic and data-driven approach, i.e., a
coupled generalized dynamic Bayesian network (C-GDBN),
which learns from the temporal sequences of LiDAR point
clouds. The main goal of the proposed C-GDBN is to learn
the dynamic interaction among various vehicles moving in
the LiDAR’s area of interest. For testing, we introduce a
coupled Markov jump particle filter (C-MJPF) to perform the
predictions (at the state and word levels) and detect anomalies
(at the word level). The major contributions of this paper are
as follows.

• Learning the dynamic patterns of multiple vehicles, de-
tected by the joint probabilistic data association filter
(JPDAF) from the LiDAR sensor observations. Hence,
training multiple probabilistic models separately through
the unsupervised growing neural gas (GNG) clustering
approach and creating their dictionaries.

• Learning the interaction among multiple vehicles and
creating a world model (i.e., a global dictionary), also
called the C-GDBN model, by considering the sequences
of super-state discrete variables (clusters or nodes).

• Re-associating and re-identifying the dynamics of the
tracked vehicles obtained by the JPDAF inside the region
of interest for continuous tracking.

• Predicting the states at the lower and words at the higher,
as well as detecting abnormal behavior at the higher
hidden levels from the C-MJPF in both the known and
unknown scenarios, after selecting the best generative
model(s).
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Fig. 1: A schematic representation of the proposed design scheme.

The rest of this paper is structured as follows. The overview
of the LiDAR dataset, data pre-processing, multiple vehicle
detection and tracking, offline learning, and online testing
stages are all introduced in Section II. The simulation results
are discussed in Section III. Finally, the conclusions and
potential directions for further research are provided in Section
IV.

II. PROPOSED FRAMEWORK

The proposed framework consists of three stages: the 3D
LiDAR dataset and pre-processing stage, the offline learning
stage, and the online testing stage, as illustrated in Fig. 1.

A. Dataset Overview & Pre-processing Stage

In this work, we consider the deep-sense 6G dataset [15],
which is based on real-world observations and is well-suited
to our scenario. The dataset captures a street-level vehicle-
to-infrastructure communication scenario, specifically scenario
32, in a wireless outdoor environment. The data is collected
on a two-way, two-lane street at College Avenue in Arizona,
USA. Here, we have only considered the LiDAR data. The
point clouds obtained by the sensor allow accurate mobility
patterns and locations of the vehicles, pedestrians, and other
static and dynamic objects available in the scene. The LiDAR
is mounted on a stationary vehicle, has a 100-meter range, and
has a maximum motor spin frequency of 20 Hz.

In the initial phase, essential features of dynamic objects
within the scenario are extracted from the sensor’s raw time-
series observations. Various filtering techniques, including

neighbor denoising, ground removal, and cropping, are care-
fully applied to each point cloud to eliminate outliers, remove
the ground, and exclude regions beyond road boundaries.
To address the point cloud association problem, a JPDAF
approach is utilized, ensuring accurate detection and tracking
of multiple vehicles within the LiDAR field of view [5]. The
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Fig. 2: A flowchart representing the algorithm for reassociation
and reidentification of disappeared vehicles.
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(a)

(b)

Fig. 3: Anomalous situation caused by the dynamic occlusion
moving on the other lane: (a) An example of a vehicle
disappearing and reappearing, (b) An example of reassociation
and reidentification of the same vehicle after it disappears from
the sensing environment.

output of JPDAF consists of 3D tracks of detected vehicles,
including their x, y, and z positions, time of appearance, and
tracking IDs. In addition to continuous tracks, some discon-
tinuous (broken) tracks due to the abnormal situation are also
obtained, which require further processing. The example of an
abnormal track is shown in Fig. 3(a) (the color bar represents
the time information), where a vehicle initially detected in a
lane appears in the scene at time 3.2 but disappears at time 6.1
due to the occlusion moving in another lane. The same vehicle
reappears at time 7.1 after passing the obstruction. Such
abnormal tracks are recovered using the proposed reassociation
and reidentification algorithm, as illustrated in Fig. 2. This
algorithm records the disappearance and reappearance times
of the blocked tracks, calculates velocity based on the last
known positions and the time elapsed since disappearance,
predicts missing positions for each time step, and computes
the matching distance between the predicted and detected
positions when the object reappears. If the matching distance
falls within a predefined threshold and the vehicle remains in
the same lane, the track will be reassociated with the previ-
ously disappeared one. An example of a disappeared track,
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Fig. 4: A graphical representation of learning C-GDBN from
3D LiDAR point clouds.

along with the output of the reassociation and reidentification
algorithm, is shown in Fig. 3(a) and Fig. 3(b), respectively.

B. Offline Learning Stage

For the learning stage, we first extract the generalized states
(GSs) containing a 6D vector of positions and velocities for all
continuous tracks. These GSs are obtained through the null-
force Kalman filter (NFKF), which assumes that vehicles are
not in motion [5]. To encode and model the dynamic GSs of
each tracked vehicle individually, we employ an unsupervised
GNG clustering approach. This neural network technique is
well-suited for our 3D dynamic environment as it does not
require a fixed number of clusters (discrete random variables
or nodes) and can incrementally adapt to the structure of
incoming data. For each vehicle, we construct a separate
dictionary to learn an independent GDBN model, as illustrated
in Fig. 4. Each dictionary comprises clusters encoding the
GSs, a transition matrix (TM) that captures the probabilities
of transitioning between nodes over time, temporal TMs, a
covariance matrix, and the mean of each node. Consequently,
multiple dictionaries are created to represent different GDBN
models.

Fig. 5: Clusters timeline view representing the dynamic inter-
actions of tracked vehicles across time.
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Fig. 6: An example illustrating cluster interaction.

To model interactions among learned GDBN models, we
establish a top-level hierarchy (see Fig. 4) that captures the
relationships between discrete random variables at each time
step. The interactions among the clusters of various tracking
vehicles across temporal evolution are illustrated in Fig. 5.
These interactions are formed through discrete entities called
words (see Fig. 6). Here, a word with value zero indicates
the absence of vehicles in the environment, while identical
words are assigned when the same sequence of clusters is
repeated. Otherwise, words are assigned in ascending order at
each time step. The global dictionary for C-GDBN contains
all the GDBN dictionaries, the set of words, and a word-level
TM that represents the probabilities of transitioning from one
word to another.

C. Online Testing Stage

As multiple GDBN models are trained on temporal se-
quences of LiDAR point clouds, selecting the most suitable
model for a given testing track is crucial for better prediction
performance. To achieve this, we identify the nearest clus-
ters of a generative model for a defined testing track using
Euclidean distance, which measures the distance from the
mean of all dictionary nodes. The model with the lowest error
(energy) will be selected to make the inference. The closest
nodes are then used to map the estimated words, updating the
belief of the C-GDBN.

To detect abnormal behavior and perform temporal and
hierarchical predictions, we propose a C-MJPF that integrates
the particle filter and the Kalman filter. The C-MJPF propa-
gates multiple particles, each representing a hypothesis about
the system’s current state. Initially, all particles are assigned
equal weights. The first word is randomly sampled from the
probability distribution to infer at the top level. The transition
probabilities of the estimated word then guide the prediction
of the next word. Particle weights are updated based on the
estimated word at each time step, and finally, the particles are
resampled, with those having higher weights being more likely
to be selected.

III. MODEL PERFORMANCE ANALYSIS & DISCUSSION

This section evaluates the performance of our proposed C-
GDBN model. We analyze its effectiveness in terms of optimal

generative model selection, state-level predictions, word-level
predictions, and word-level anomaly detection. The optimal
model is chosen by finding the nearest learned clusters. Here,
we use the Euclidean distance between each 3D position
of the given testing track and the mean of all the clusters.
Cumulative errors are calculated while selecting the generative
model. Since the estimated and predicted words are discrete,
the Hamming distance is a suitable metric for abnormality
detection. A mismatch between the predicted and estimated
words results in a binary value of "1", while a match yields
"0". In addition, we evaluate performance in both known
and unknown scenarios. The same set of tracks used to
train the GDBN models is also used for testing in known
scenarios, while in unknown scenarios, testing is performed
using abnormal tracks that are obstructed by other objects.

The performance of the model under the known scenario is
shown in Fig. 7. For a given testing track, the best generative
model chosen is 85 because it achieves fewer errors in finding
the nearest clusters compared to other trained models. The
low-level state predictions shown in Fig. 7(b) match the
observations coming from the LiDAR sensor, and the high-
level word predictions shown in Fig. 7(c) match the estimated
words that are mapped after finding the nearest clusters of
the selected model. The accurate predictions reflect a better
understanding and learning abilities of our proposed model.

An example shown in Fig. 8 illustrates the model’s perfor-
mance in an unknown scenario. In this case, the best generative
model for a given broken track is 51 because it closely
matches the testing data and achieves fewer distance errors
(see Fig. 8(a)). Fig. 8(b) shows an abnormal observed track,
which disappears due to the blockage after a few observations.
The predictions initially match the observations, then deviate

(a) (b)

(c)

Fig. 7: Optimal generative model selection and predictions in a
normal scenario: (a) Error analysis in selecting the best model
for the testing track, (b) Low-level state prediction, (c) High-
level word prediction.

1680



(a) (b)

(c)

Fig. 8: Optimal generative model selection and predictions in
an abnormal scenario: (a) Error analysis in selecting the best
model for the testing track, (b) Low-level state prediction, (c)
High-level word prediction.

due to the absence of observations. This anomalous situation
occurred for a very short period; however, as soon as the
LiDAR point-cloud observations appeared, the model started
to give the correct predictions. Similarly, the high-level word
prediction under an unknown situation is shown in Fig. 8(c).
We can observe that when the observations disappear, the
model predicts blockage words (50 and 51 as almost two
clusters get missed). The anomaly indicator represented by the
hamming distance occurs at LiDAR frames 3 and 16 are due to
the model switching. As the observations appear from LiDAR
frame 16, the model correctly predicts the normal words.

IV. CONCLUSION & FUTURE WORK

This paper proposes a probabilistic, hierarchical, data-
driven, and interactive dynamic Bayesian approach to learning
the dynamic point cloud patterns from the 3D LiDAR sensor.
Initially, a separate dictionary for each detected vehicle is
created, and then a global dictionary is formed, allowing
interaction among various vehicles. The optimum model for
the C-MJPF is selected during the testing phase to make
inferences. Our proposed C-GDBN model allows for better
performance in terms of low-level state predictions, as well
as high-level word predictions and abnormality detections.
Moreover, this interactive approach provides better explainable
features because of its hierarchical structure, which models
uncertainty and transitions from hidden patterns.

Future extensions of this work could take into account ad-
ditional data modalities, such as the integration of 3D LiDAR
with communication signals. Building interactions between the
two would be an interesting and useful approach for self-aware
agents. This highlights the concept of integrated sensing and
communication (ISAC) for future communication systems.
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