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Abstract—The Internet of Things is transforming various
fields, with sensors increasingly embedded in wearables, smart
buildings, and connected equipment. While deep learning enables
valuable insights from IoT data, conventional models are too
computationally demanding for resource-limited edge devices.
Moreover, privacy concerns and real-time processing needs make
local computation a necessity over cloud-based solutions. Inspired
by the brain’s energy efficiency, we propose a shallow bidirec-
tional predictive coding network with early exiting, dynamically
halting computations once a performance threshold is met.
This reduces the memory footprint and computational overhead
while maintaining high accuracy. We validate our approach
using the CIFAR-10 dataset. Our model achieves performance
comparable to deep networks with significantly fewer parameters
and lower computational complexity, demonstrating the potential
of biologically inspired architectures for efficient edge AI.

Index Terms—Predictive Coding Theory, Early Exiting Neural
Networks, Extreme Edge Processing, Energy Efficiency

I. INTRODUCTION

The Internet of Things (IoT) is transforming various do-
mains, including health monitoring, smart cities, and precision
agriculture, where vast amounts of data must be efficiently pro-
cessed. To meet this demand, Deep Learning (DL) is integrated
into IoT systems, enabling real-time monitoring, optimized
actuation, and selective data storage [1]. However, privacy
concerns and the need for low-latency processing drive a shift
toward Edge AI, where inference is performed directly on IoT
devices instead of cloud servers. This approach reduces depen-
dence on remote infrastructure but introduces new challenges,
as edge devices are often resource-constrained, making the
deployment of large AI models difficult [2]. On the one hand,
DL models require substantial memory to store parameters and
significant computational power to execute complex operations
[3]. On the other hand, edge devices vary widely in compu-
tational resources, ranging from microcontrollers to cloudlets,
including single-board computers [4]. Hence, this variability
poses a significant challenge, particularly for IoT extreme edge
devices with only a few kilobytes of memory. In such cases,
conventional DL models cannot be deployed directly without
considerable modifications to their architecture.

Ensuring reliable inference on resource-constrained edge
devices requires novel design approaches, and the human brain
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offers a compelling source of inspiration. Despite handling
a vast array of tasks and processing large volumes of data,
the brain operates with remarkable efficiency, consuming only
around 20 Watts of power [5]. Indeed, the brain counts billions
of neurons [6], but its neuronal morphology could explain
the observed frugality and efficacy [7]. The brain processes
information through a structured hierarchy of layers, rein-
forced by bidirectional connections that enhance its ability to
abstract and interpret the surrounding environment [8]. A key
theoretical framework for understanding these interactions is
predictive coding (PC). According to PC theory, the brain con-
tinuously minimizes prediction errors—the difference between
actual and predicted stimuli—by refining its internal repre-
sentations through feedback loops between higher and lower
processing layers [9]. When implemented with convolutional
layers, where the feedforward path consists of convolution
operators and the backward path of deconvolutions, Predic-
tive Coding Networks (PCNs) often achieve higher accuracy
than conventional architectures [10]–[12] and exhibit greater
robustness to adversarial attacks [13].

However, existing PCNs have primarily focused on enhanc-
ing model performance rather than designing architectures
optimized for low-resource devices. Typically, PCNs are con-
structed by introducing feedback connections into deep feed-
forward networks and are trained for a fixed number of cycles.
This design, however, raises several concerns. Most notably,
it doubles the number of parameters compared to the baseline
feedforward model, making it unsuitable for deployment on
extreme-edge devices. Additionally, PCNs do not incorporate
the adaptive plasticity of the brain, which efficiently modulates
computational effort based on input complexity. As a result,
these models may perform unnecessary computations on sim-
pler inputs. To overcome these limitations, it is crucial to
leverage the recursive nature of predictive coding to construct
shallower networks while integrating a dynamic mechanism
that adjusts the number of cycles, and consequently, the
number of operations, based on input complexity.

To introduce dynamicity into PCN, we leverage early exit-
ing, a well-established technique within the broader framework
of Dynamic Neural Networks [14], [15]. Dynamic networks
adjust their computational paths or model parameters at run-
time based on the complexity of the input sample [16]. Early
exiting, in particular, enables adaptive inference by integrating
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lightweight decision blocks at intermediate layers of a back-
bone model. These blocks make per-input halting decisions,
allowing the model to return a response if a given confidence
threshold on a quality metric (e.g., class probability) is met.
Otherwise, computation continues through deeper layers for
finer processing [17]. This mechanism naturally distinguishes
between ”easy” and ”hard” samples—easy samples exit earlier,
while harder ones traverse the full network for more thor-
ough analysis. Incorporating early exiting into PCN enables
us to determine when to halt further PC cycling over the
backbone once a satisfactory response is reached. This not
only reduces computational complexity but also aligns with
inhibitory mechanisms observed in the brain [18].

Our contributions can be summarized as follows:
• We propose a new derivation of PC cycling rules in the

context of bidirectional PCN that effectively implements
feedback and feedforward update rules.

• We leverage PC dynamics to design shallow PCN that
achieve accuracy on par with deeper networks while
substantially reducing the memory footprint, making them
well-suited for deployment on extreme-edge devices.

• We improve the efficiency of PCN inference by intro-
ducing a dynamic early-exiting mechanism, allowing for
adaptive adjustment of the number of cycles.

• We utilize knowledge distillation across cycles to enhance
the training of early-exiting PCN, thereby improving the
performance of early cycles (i.e., exits).

II. PROPOSED ARCHITECTURE

In this section, we introduce our proposed PCN model
enhanced with early exits and outline the inference process
and training methodology.

A. Early Exiting PCN Architecture

Our proposed model is illustrated in Figure 1. It consists of
a shared backbone serving as a feature extractor, along with
downstream task classifiers. The backbone is designed as a
bidirectional hierarchy of convolutional and deconvolutional
layers, where blue arrows denote the forward convolutional
pass and red arrows indicate the feedback deconvolutions.
During inference, the model performs a variable number of
cycles, t ≤ T , over the backbone to iteratively minimize
local prediction errors across all layers. Once the cycling
process concludes, the final layer feature vector is passed
to the classifier corresponding to the current cycle count t
(green arrow in Figure 1). The classification confidence is then
compared against a predefined user threshold. If the confidence
exceeds the threshold, the inference is terminated, and a
response is returned. Otherwise, another cycle is initiated,
followed by another classification and threshold comparison.

In the proposed architecture, the number of classifiers cor-
responds to the maximum number of allowed cycles, denoted
as T . The decision to employ T distinct classifiers, rather
than a single classifier shared across all cycles, is driven by
the evolving nature of feature representations throughout the
iterative process. Since feature vectors undergo continuous

Fig. 1. Proposed model — PCN appended with early exiting classifiers. (Blue:
input data to the model, Red: PC cycling of feed-forward and backward layers
to reduce local errors, Green: exit classifier for cycle t)

refinement from one cycle to the next, a classifier trained
on feature representations from a five-cycle model would be
unable to accurately interpret the patterns extracted by a one-
cycle model for the same input. In the following subsections,
we will further detail the cycling rules as well as the training
scheme.

B. PC Cycling Rule

We consider a PCN comprising L layers. The forward
convolutional weights connecting layer l to layer l + 1 are
denoted by Wl,l+1, while the backward (feedback) convo-
lutional weights from layer l + 1 to layer l are represented
as Wl+1,l. We define rl(t) as the feature representation at
convolution layer l and cycle t. The representation at layer
l = 0, i.e. r0(t), is fixed for all cycles and is equal to the
input image. Further, for t = 0, all feature representations are
initialized through a standard feedforward pass, given by:

rl(0) = ϕ(Wl−1,lrl−1(0)), l = 1, · · · , L

where ϕ a nonlinear activation function, which we assume to
be ReLU in our experiments.

To derive the PC update rules, we apply gradient descent
to minimize the local errors at each pass.

1) Feedback pass update: The feedback pass update rule
governs a process in which the higher-layer representation,
rl+1(t), generates a top-down prediction of the lower-layer
representation, rl(t), denoted by pl(t). This prediction is then
used to update rl(t). The top-down prediction is given by:

pl(t) = ϕ [Wl+1,lrl+1(t)]

The update is carried out by minimizing the local error, which
is defined as:

ϵl(t) =
1

2
||rl(t)− pl(t)||22

where |.|2 denotes the L2-norm. The gradient is found to be:

∂ϵl(t)

∂rl(t)
= rl(t)− pl(t)

For each layer, we update the representation rl(t) using
gradient descent with a learning rate αl. To maintain notational
clarity, and given that each cycle consists of a feedback pass
and a feedforward pass, the feedback updates are computed
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at the midpoints between consecutive cycles. Hence, the feed-
back update rule, computed as t+1/2, with t = 0, · · · , T −1,
can be expressed, for l = 1, · · · , L, as:

rl(t+ 1/2) = (1− αl)rl(t) + αlϕ [Wl+1,lrl+1(t)] (1)

The representation of the last layer remains unaffected during
the feedback pass by design, i.e. rL(t+ 1/2) = rL(t).

2) feed-forward pass update: The feed-forward pass update
rule governs a process in which the lower-layer representation,
generates a bottom-up prediction, which is then used to update
the upper-layer representation. The feed-forward prediction is
given by:

pl(t+ 1/2) = ϕ[Wl−1,lrl−1(t+ 1/2)]

Similar to the feedback process, we compute the gradient of
the prediction error with respect to rl(t + 1/2). This results
in the following feed-forward update rule, for l = 1, · · · , L:

rl(t+1) = (1−βl)rl(t+1/2)+βlϕ[Wl−1,lrl−1(t+1/2)] (2)

where βl is the learning rate for layer l.
While drawing inspiration from [11], the above derivations

differ in key ways. The feedback pass update remains the
same, but our feedforward pass update follows a different
formulation. Indeed, in [11], both feedback and feedforward
pass updates rely solely on the feedback convolution weight
matrices, Wl,l−1, without utilizing the feedforward convolu-
tion weight matrices, Wl−1,l. This is because, in [11], the
gradients for both feedback and feedforward passes are derived
solely from top-down predictions. In contrast, our formulation
integrates both top-down and bottom-up predictions, leading
to a more comprehensive update mechanism.

It is worth pointing out that for any cycle t, the last layer
feature representation rL(t) serves as an input for the classifier
head.

C. Early Exiting PCN Training

As previously mentioned, each cycle in PCN is associated
with a classification head. Consequently, the classification task
can be formulated as a multi-objective optimization (MOO)
problem, where T losses, denoted as Li, i ∈ [1, T ], compete
over the shared convolutional and deconvolutional weights of
the PCN. Formally, the training problem is expressed as:

min (L1, . . . ,LT )

We address the learning problem using scalarization, which
transforms the MOO problem into a single-objective optimiza-
tion problem through an aggregation rule [19]. A widely used
approach is linear scalarization [20], where the overall loss is
formulated as a weighted average of the individual losses.

Furthermore, we enhance our training strategy by incor-
porating Kullback-Leibler (KL) divergence, denoted as KD,
between intermediate logits and the final-cycle logits to fa-
cilitate knowledge distillation [21], [22]. In this framework,
the deepest network (i.e., the last-cycle network) acts as
the teacher, while the preceding shallow sub-networks serve
as students. This additional regularization helps early-cycle

TABLE I
MODEL CONFIGURATIONS

A B C
Input image 32x32

Conv-16 Conv-16 Conv-32
Conv-16 Conv-16 Conv-32
Conv-32 Conv-32 Conv-64
Conv-32 Conv-32 Conv-64
Conv-64 Conv-64 Conv-128
Conv-64 Conv-64 Conv-128

- Conv-64 -
- Conv-64 -
Global Average Pooling
T Fully Connected layers

networks learn more complex patterns despite their limited
capacity. Consequently, the total loss can be expressed as:

Ltot = ρ

T∑
i=1

λiLi + (1− ρ)

T−1∑
i=1

KD(ŷi, ŷT )

where λi is a positive weighting factor for the loss function
Li, ŷi represents the logit vector from classifier i, and ρ is
a balancing factor that regulates the contribution of the two
terms in the total loss.

III. EXPERIMENTS

In this section, we empirically show that recursive pro-
cessing with PC update rules in a deployable shallow model
on extreme edge devices can deliver competitive performance
compared to established models. Furthermore, we illustrate the
benefits of incorporating an early exiting mechanism into PCN
to minimize redundant computations.

A. Dataset

In order to evaluate our method, we choose the CIFAR-10
dataset [23]. It includes 60000 32x32 RGB images evenly dis-
tributed over 10 classes, with 6000 images per each. CIFAR-10
is widely adopted by tiny machine learning benchmarks [24],
and the images simulate numerous IoT applications with low-
resolution cameras (e.g., surveillance for eyewear protection
detection and smart farming for fruit disease classification).
For model learning, the training set is formed of 50000 images,
and the rest is destined for testing. As a data augmentation pro-
cedure, we applied random translation and horizontal flipping.
The training set was clustered into 128-sized batches.

B. Model configuration

The model design process was guided by the goal of
leveraging PC dynamics to develop shallow networks capable
of running on extreme edge devices with memory constraints
ranging from kilobytes (KB) to megabytes (MB). The models
presented in Table I are specifically designed to test the robust-
ness of PC feature updates. Starting with a shallow baseline
(Model A), we systematically modify its structure: Model B
is deepened, and Model C is widened. Our proposed models
are based on VGG-like architectures, where all convolutions
use a 3×3 kernel with a stride of 1 and are followed by a
ReLU activation function. Whenever the number of channels
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TABLE II
ACCURACY (%) OF BASELINE MODELS AND AVERAGE ACCURACY ACROSS

CYCLES FOR THE PROPOSED EE-PCN GIVEN A THRESHOLD τ

Model τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9
TinyPerf 85.00 [24]
Sq.Next 86.82 [25]

Wen-C-FF 88.23 [11]
Wen-C-6 92.40 [11]
VGG-11 91.30 [26]
PCN-C-6 91.95

EE-PCN-A 87.34 87.42 87.41 87.44
EE-PCN-B 88.42 88.40 88.20 88.06
EE-PCN-C 89.74 89.75 89.80 89.81

changes, we apply either max-pooling (feed-forward direction)
or upsampling (feedback direction) with a 2×2 kernel. Finally,
the early exit classifiers are simple linear layers to ensure
minimal overhead. The additional number of parameters is
T × C × 10, where C is the number of channels in the last
convolution. Note that we have T classifiers corresponding to
T cycles as rL(t) is the input to the classifier t.

For comparison, we adopt several baselines: the MLPerf
benchmark for tiny image classification models (TinyPerf)
[24], SqueezeNext as a representative edge-specific model
(Sq.Next) [25], model C trained without PC cycling rules
(Wen-C-FF) and with 6 PC cycles (Wen-C-6) from [11] to
evaluate our proposed PC update rules without early exiting,
and VGG-11 [26] as a baseline for deep networks. We denote
our early-exiting predictive coding networks as EE-PCN-i,
where i ∈ {A, B, C}, corresponding to the respective model
configurations and PCN-C-6, the network with 6 PC cycles
following our mathematical derivation without early exiting
(i.e., one classifier after cycling 6 times over the backbone).

C. Training & Evaluation

For training, we cycle over the PC backbone for a maximum
of T = 6 cycles. We use mini-batch stochastic gradient descent
for optimization, initialized with a learning rate of 0.01 and
gradually reduced by a factor of 10 after a patience of 10
epochs. We set the weight decay to 5e−4 and momentum
to 0.9. All models were trained for 300 epochs with early
stopping after 50 epochs if no improvement. We assign
equal weights to the losses of all individual classifiers, i.e.
∀i ∈ [1, T ], λi = 1, and set ρ = 0.8.

For evaluation, we report the average accuracy across
cycles, where a given exit accuracy is the product of the
number of images that exited at that considered exit and the
number of those that are correctly classified. In addition, we
assess efficiency using the number of parameters, model size
(measured with 32-bit floating-point weights, FP32), and the
number of operations (FLOPs).

IV. DISCUSSION

From a model performance perspective, Table II presents
the accuracy of our baseline models and proposed PCN
models. Despite increasing thresholds, the average accuracy
of EE-PCN models remains largely unaffected. This can be

TABLE III
NUMBER OF PARAMETERS AND MEMORY FOOTPRINT OF

BASELINE AND PROPOSED EE-PCN MODELS

Model #Params (106) Size (MB)
VGG-11 28.15 107.4
Sq.Next 0.59 2.25

EE-PCN-A 0.15 0.56
EE-PCN-B 0.30 1.13
EE-PCN-C 0.58 2.22

Fig. 2. Ratio of test images exiting at different cycles with respect to a given
confidence threshold for Model A

attributed to the fact that higher thresholds push more images
to exit at later stages. These later exits correspond to a higher
number of cycles, allowing the model to correctly classify
difficult images with higher confidence. Since our reported
accuracy depends on the product of the number of exited
images and the proportion of those correctly classified, even
a small number of correctly classified images contributes to
improving overall accuracy. Our results thus support the idea
that additional cycles enhance the expressivity of shallow
models, improving their ability to learn complex patterns. This
is particularly beneficial when distinguishing between difficult
classes, as it enables the model to extract more distinctive
features. Furthermore, our proposed models outperform our
edge-specific baseline models while achieving accuracy closer
to that of VGG-11, but with significantly fewer parameters, as
shown in Table III. Finally, we can appreciate the benefit of
utilizing PC in conventional CNN, as we perform better than
the equivalent feed-forward CNN (Wen-C-FF vs. PCN-C-6)
and highlight the fact that our derived PC rules can achieve
comparable results with those of [11] while combining both
top-down and bottom-up predictions.

Furthermore, Figure 2 highlights the advantage of integrat-
ing an early exiting mechanism into PCN. We analyze EE-
PCN-A and plot the number of released images for different
confidence thresholds. With a confidence threshold of 70%,
EE-PCN-A releases around 85% of the test data (i.e., 8500
images) while requiring approximately 0.3 × 108 FLOPs per
image. This results in an overall 82.86% reduction in FLOPs
compared to static execution with VGG-11. Thus, when a
model exits early (i.e., at T = 1 or T = 2), it not only
benefits from a small memory footprint but also achieves
a significantly lower FLOP count than deep networks. This
leads to substantial energy savings, enabling battery-powered
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Fig. 3. Weighted number of FLOPs for the proposed EE-PCN models against
VGG-11

extreme-edge devices to operate for extended periods.
Since our goal is to deploy our models on extreme edge

devices, memory footprint plays a crucial role in our design.
In Table III, we clearly see that the proposed models meet the
memory constraints of many extreme edge devices with only a
few megabytes of storage. Notably, EE-PCN-A can be further
compressed using 8-bit integer weights, reducing its size to
approximately 143 KB, which fits within the memory limits
of most frugal variants of STM32 microcontrollers. However,
the recursive nature of PCN introduces additional numerical
operations, which can be computationally demanding. To
better analyze this trade-off, we plot in Figure 3 the required
FLOPs for processing all test set images as a function of the
number of cycles. We observe that, up to a certain model-
dependent number of cycles, the computational cost remains
below that of VGG-11. Indeed, numerous input images do not
require complex processing, resulting in a significant reduction
in compute demand from the edge device.

V. CONCLUSION

In this paper, we proposed a shallow network for image
classification based on PC dynamics and early exiting for
extreme edge devices. We found that PC can yield high
accuracy without resorting to deep models. Moreover, since PC
cycling demands a high number of cycles, we employed early
exiting to abort further computation once a user-predefined
performance target is reached. Finally, we could achieve com-
petitive results with deep networks while drastically reducing
the memory footprint. Our future work will be to further
optimize the training process by quantifying the individual
impacts of PC cycling, linear scalarization, and knowledge
distillation on the overall performance and propose novel
methodologies to combine them efficiently. Moreover, we
intend to assess our approach to real-world edge applications
where large images are often used, such as video surveillance
and traffic monitoring.
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