I2I-PR: Data-Driven Phase Retrieval Using
Image-to-Image Diffusion Models

Mehmet Onurcan Kaya' and Figen S. Oktem?
fDept. of Applied Math. and Computer Science, Technical University of Denmark, Lyngby, 2800, Denmark
'Dept. of Electrical Eng., Middle East Technical University (METU), Ankara, 06800, Turkey
Email: monka@dtu.dk, figeno@metu.edu.tr

Abstract—Phase retrieval (PR) involves recovering a signal
from intensity-only measurements, and arises in many fields
such as imaging, holography, microscopy, optical computing,
and crystallography. Although there are several well-known
phase retrieval algorithms, including classical iterative solvers,
the reconstruction performance often remains sensitive to mea-
surement noise and initialization. Recently, image-to-image (I12I)
diffusion models have gained popularity in various image re-
construction tasks, yielding significant theoretical insights and
practical advances. In this work, we propose I2I-PR, a data-
driven phase retrieval approach that unrolls classical solvers into
a deep iterative refinement framework inspired by modern 121
pipelines. Our method begins with an enhanced initialization
stage, combining Hybrid Input-Output and Error Reduction
methods with a novel acceleration mechanism to obtain multiple
crude estimates. The reconstruction is then iteratively refined
using these multiple estimates with a tailored image-to-image
diffusion pipeline, while simultaneously enforcing measurement
consistency. We demonstrate that 12I-PR outperforms both clas-
sical and deep learning-based methods, highlighting its potential
for robust and efficient phase retrieval in various applications.

Index Terms—Phase retrieval, deep learning, image-to-image
diffusion models, unrolling, computational imaging.

I. INTRODUCTION

Phase retrieval (PR) is a fundamental inverse problem in
many scientific and engineering disciplines, where the goal is
to reconstruct a signal using only intensity measurements such
as Fourier intensities. This problem is critical in applications
such as microscopy, holography, crystallography, and coherent
diffraction imaging [1]-[3]. Mathematically, the PR problem
involves reconstructing an unknown signal x € C" from its
noisy intensity measurements:

y? = |Ax|2 +w (D

where A € C™*" is a known measurement operator,
y? € R™ denotes intensity measurements, and w represents
measurement noise, often modeled as Poisson-distributed but
approximated as Gaussian in many practical cases [4]. An
important special case is Fourier PR, where A corresponds
to the Fourier transform.

The primary challenge in PR stems from the loss of phase
information, making the problem highly non-linear and ill-
posed. Classical iterative methods such as Hybrid Input-Output
(HIO) and Error Reduction (ER) rely heavily on projections
onto constraint sets, but their sensitivity to noise and initial-
ization can lead to suboptimal solutions, particularly in noisy
and large-dimensional settings [5].
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In response to these challenges, deep learning has emerged
as a powerful tool for solving inverse problems, including
PR [6], [7]. Data-driven approaches based on deep neural
networks (DNN5s) have shown promise in directly reconstruct-
ing images from measurements or refining initial estimates
from classical solvers. However, these methods face significant
limitations, including sensitivity to domain shifts between
training and test data and lack of interpretability. In addition,
they require extensive hyperparameter tuning, making real-
world use difficult [6], [7]. Furthermore, such deep-learning
based PR methods tend to suffer from over-smoothing, causing
loss of fine details in reconstructions [8].

Among deep learning-based approaches, physics-based un-
rolling methods are the most promising one for PR, as they
mimic classical iterative solvers through trainable network
layers. However, they often suffer from long training times, as
well as computational and memory inefficiencies, due to their
sequential nature and extensive parameters [7], [9]. Classical
diffusion pipelines also suffer from similar disadvantages since
they initiate reconstruction from random noise instead of using
a warm-start with an initial crude estimate, underutilizing
the denoiser’s capacity and leading to slower convergence
[10]-[12]. These inefficiencies make their practical application
challenging and highlight the need for more effective initial-
ization strategies and computationally efficient models.

In contrast, recent image-to-image (I2I) diffusion models
introduce a warm-start approach by initializing the recon-
struction with a plausible estimate rather than pure noise.
This refinement-based process simplifies learning by focusing
on improving an initial estimate rather than generating an
image from scratch. The effectiveness of 121 pipelines has been
demonstrated in various applications, including deblurring and
super-resolution [11]-[14].

In this work, we propose image-to-image-PR (I2I-PR),
a data-driven phase retrieval approach that unrolls classical
solvers into a deep iterative refinement framework inspired by
modern I2I pipelines. More specifically, our method extends
the Inversion by Direct Iteration (InDI) [12] framework to
phase retrieval by introducing novel strategies for denoising,
initialization, and measurement consistency. Our approach
begins with an enhanced initialization stage, combining Hy-
brid Input-Output and Error Reduction methods with a novel
acceleration mechanism to generate multiple crude estimates.
These initial estimates provide diverse candidate solutions with

EUSIPCO 2025



different artifacts. Unlike traditional diffusion methods that
start from random noise, I2I-PR leverages these initial esti-
mates, allowing for more effective utilization of the denoiser’s
capacity and a significant reduction in training time. By
iteratively refining the reconstruction with learned I2I priors
and enforcing measurement consistency, I2I-PR enhances both
robustness and reconstruction quality.

Our hybrid framework combines the strengths of physics-
based classical solvers and data-driven diffusion models, en-
abling improved reconstruction quality with training efficiency.
Unlike conventional diffusion models that start from random
noise/initialization, our method refines a coarse estimate ob-
tained via classical solvers. Similar to unrolling-based meth-
ods, I2I-PR iteratively refines this estimate by decompos-
ing the phase retrieval problem into smaller, less ill-posed
subproblems. We demonstrate that I2I-PR outperforms both
classical and deep learning-based PR methods, highlighting
its potential for broader applications beyond phase retrieval,
including other linear and nonlinear inverse problems.

II. RELATED WORK

A notable 121 framework is the Inversion by Direct Iteration
(InDI) method, which formulates a structured diffusion process
from an initial estimate [12]. In its stochastic version, InDI
integrates denoising diffusion probabilistic models into an it-
erative refinement framework, progressively improving image
quality while incorporating stochastic perturbations to enhance
robustness against degradation and noise.

The InDI method effectively mitigates the “regression to
the mean” effect observed in traditional single-step regression
models, which tend to produce oversmoothed outputs [15].
Instead, it incrementally refines images, similar to generative
denoising diffusion models, but without requiring explicit
knowledge of the degradation process. By progressively refin-
ing images over multiple steps, InDI helps address the chal-
lenges associated with the ill-posed nature of phase retrieval.
By decomposing the original PR problem into a sequence of
subproblems—each of which is less ill-posed than the full re-
construction problem—InDI reduces the overall ill-posedness.
Unlike single-step regression models, which often struggle to
recover fine details, InDI avoids excessive smoothing through
its iterative update process [12].

Training in the InDI framework follows a structured degra-
dation schedule, simulating noise and degradation levels com-
putationally efficiently. The degradation process is defined
as [12]:

x: = (1 — t)x + tz + toze, 2)

where x is the clean image, z is the degraded input, ¢ € [0, 1]
represents the noise level, o; is a time-dependent noise stan-
dard deviation, and € ~ A (0,1) introduces stochasticity. The
training objective for the denoiser model is given by:

miniemizeIEx)sz(&z) [Eth(t) [||Den0iserg(xt,t) - x||§]] ,

3)
minimizing the mean squared error between the clean image
and its denoised counterpart across noise levels.

Once trained, the denoiser refines images iteratively, follow-
ing the recurrence relation:

Xpr = %Denoiser(ﬁt, t)+(1 - %) X+ (t—7)y /o — ol€,

“)
where 7 is a small backward step, ensuring gradual refinement.
The noise variance reduction term o2 _—o? enables controlled
denoising, enhancing image quality. Starting from ¢ = 1 with
X; = z + 01w, where w ~ N(0,1), the process iteratively
improves X; until convergence.

The function Denoiser(X;, t) estimates the expected clean
image given the noisy input, approximating E[x;_1 | xy].
This iterative refinement structure allows InDI to outperform
traditional single-step models in preserving fine details and
adapting to varying degradation levels, making it well-suited
for inverse problems such as phase retrieval.

1II. DEVELOPED METHOD

Our method builds upon the Inversion by Direct Iteration
(InDI) framework. We employ a hybrid iterative initialization
stage that combines the Hybrid Input-Output (HIO) and Error
Reduction (ER) methods with a novel acceleration mechanism
to generate multiple crude estimates. These initial estimates
provide diverse candidate solutions with different artifacts. The
reconstruction is then iteratively refined using these multiple
estimates with an image-to-image (I2I) diffusion pipeline
based on InDI, which progressively improves the reconstruc-
tion while enforcing data consistency with the measured
Fourier intensities.
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Fig. 1. The overall pipeline of I12I-PR.

A. Iterative Refinement Stage

In the iterative refinement stage, we learn and use an image-
to-image translation model from the initialization output to the
ground truth image using the InDI framework given in Eq. (4).
However, we modify the standard InDI framework to better
suit the phase retrieval problem. These modifications ensure
a more effective refinement of the initialization estimates,
leading to improved reconstruction quality and robustness.

In our approach, the initialization stage produces k distinct
crude estimates {ifﬁ)}fnzl from the same measurement y.
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These diverse reconstructions are critical because each es-
timate may correctly recover different regions of the image
while also containing unique artifacts. Their mean,

k
S, )
m=1

serves as a preliminary, stable starting point for the subsequent
refinement stage. Averaging multiple initial reconstructions,
while beneficial for providing a stable starting point, inevitably
leads to some information loss, as fine details and distinct
features present in individual estimates may get blurred. To
mitigate this, our denoiser is conditioned on the entire set of
k initial estimates instead of solely relying on their average.
In contrast to the denoiser component in the standard InDI
formulation Denoiser(X;,t) given in Eq. (4), our model uses

7z =

T =

Denoiser(Xy, t, {Xfﬁ)}ﬁlzl), (6)

which effectively incorporates the unique contributions of each
crude estimate into the refinement process.

At each refinement step, after the denoising operation, the
model enforces measurement consistency through the HIO
update. Formally, this update is performed as:

HIO(Denoiser (X, t, {5(-(1::)}51:1), y), @)

1

which combines the Fourier magnitude of the denoised image
with the measurement, ensuring that the refined image adheres
to the physical constraints imposed by the data. Gaussian noise
is then added according to the InDI formulation to simulate
the reverse diffusion process. Simply applying a denoiser at
each refinement step can lead to solutions that deviate from
the measurements, especially in nonlinear inverse problems
such as phase retrieval. To address this, we incorporate a
data consistency enforcement block that ensures the refined
image remains faithful to the observed measurements. By
enforcing measurement consistency through the HIO update,
we prevent divergence from the given Fourier magnitudes
while still leveraging the denoiser for structured image priors.
The overall iterative update is expressed as:

Xi—r :% HIO (Denoiser(?t,t, {f{fﬁ)},’fm:l),y)
- ®)
—|—(1—?)§t+(t—r) ol . —ole,

where 7 is a small backward time-step, o; is the noise sched-
ule, and € is sampled from a standard normal distribution. By
discretizing the timestep interval [0, 1] into T steps, we derive
Algorithm 1. As shown in Fig. 1, this iterative refinement,
performed over T' discrete steps, gradually corrects errors and
mitigates the ill-posedness inherent in phase retrieval.

A key advantage of this iterative refinement is its ability to
decompose the overall PR challenge into a sequence of simpler
denoising steps. By gradually reducing the noise and refining
the estimate, the model can correct errors in a controlled man-
ner and maintain stability even under severe noise conditions.
It also achieves efficient use of the denoiser’s model capacity

and strikes a balance between denoising (regularization) and
data consistency (fidelity) to produce high-quality results.

Our UNet denoiser is a central component of the refinement
stage. It operates on k + 1 input channels—one channel repre-
senting the current refined estimate and k£ channels correspond-
ing to the crude initial estimates. This multi-channel input
provides rich contextual information that guides the denoising
process. Additionally, an auxiliary timestep input, encoded
via positional encoding followed by a linear transformation,
conditions the network on the current noise level. The network
is designed to predict the residual—the difference between the
noisy input and the desired clean image—enabling efficient,
small-step corrections. To further enhance performance, our
UNet incorporates attention mechanisms in both the downsam-
pling and upsampling paths. These attention modules enable
the network to focus on the most informative features, such as
edges and textures, thereby preserving high-frequency details
throughout the refinement process.

Algorithm 1 I2I-PR

Input: y (noisy magnitude measurements), T, K, 3, {o;} 1,
(fixed hyperparameters), A € RT (learnable vector, initialized
with logarithmically increasing values)

Initialization:
{5“1(1:3)}5@:1 < Initialization stage(y)
w < sample from N (0,1,,)
X1 S K+ 0TW
Main loop:
for i =T to 1 do
x; < Denoiser(x} , i, {fcfrjﬁ) k1)
ZZ(-O) — X;
yi' & Ay + (1 A)|Az”)]
forkzlltoKdo (o)
k Az "
Zz(' " Al (Yil © m)
(k)

i

v < indices where z; "’ violates spatial constraints
(k)
2P [n] 7~ n] , né,
g (k—1) (k)
2" Vi) - 8207 [n] nen.

€ « sample from N (0,1,,)
PO (L) X+ JoR —ote

%

X, lg
2

return x}

The training of our model follows the InDI strategy given in
Eq. (3), which relies on a carefully defined degradation/noising
process. During training, the model is exposed to simulated
noisy images generated by a fixed degradation schedule that
gradually transitions from a clean image to a highly degraded
one. This process ensures that the model learns to reverse the
degradation over multiple timesteps. By aligning the network’s
behavior during both training and testing, this framework
enhances performance and computational efficiency. Extensive
experiments have demonstrated that careful tuning of hyper-
parameters—such as the number of timesteps 7', the number
of inner iterations K, the regularization parameter (3, and the
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noise schedule {o;}X —is critical for balancing convergence
speed and reconstruction accuracy.

B. Initialization Stage

Inherent nonlinearity of PR makes the reconstruction highly
sensitive to initialization. To improve robustness, we adopt a
hybrid strategy that combines HIO with ER and an acceler-
ation mechanism, as described in [4]. Initially, m different
random HIO initializations are run for s iterations to explore
the solution space in parallel. The k estimates with the lowest
residuals, ||y — |Ax|||3, are selected for further refinement.

These chosen estimates then undergo additional HIO and
ER cycles for n iterations, alternating between applying the
HIO constraint to enforce consistency with the measured
Fourier magnitudes and the ER constraint to directly min-
imize the image-domain error. This cyclic alternation helps
to prevent the reconstruction from getting trapped in local
minima by balancing aggressive exploration (via HIO) with
fine-tuned refinement (via ER). During the ER phases, an
acceleration step is periodically applied to speed up conver-
gence. Specifically, the accelerated ER (AER) method given in
Algorithm 2 leverages a convex combination of the current and
previous estimates, modulated by a scaling factor (. Here, Pp
denotes the projection onto the Fourier magnitude constraint
set, while Pg represents the projection onto the image-domain
constraint set (e.g., enforcing spatial priors such as known
object support). At each acceleration step, the algorithm
computes the difference between two successive projections,
x, and x/, forms an intermediate point c,, and extracts a
directional vector a. The local progression distance is then
used to update the estimate as follows:

1
Xn41 =Cp+(ra where r= §HX;Z—XZH 9)

This momentum-like adjustment not only helps the algorithm
escape stagnation but also accelerates convergence, leading to
lower residuals and higher-quality reconstructions.

Algorithm 2 Proposed accelerated ER (AER) algorithm
for n=1to K do
X, Prx,
X!+ Pgx),
if n = —1 (mod t) then
Cn ¢ 5(x), +x7)
a < I

Cp—Cnp—t
cn_cn—tH
4 gllxn —xql
Xnpt1 ¢ Cp +(ra
else
Xnpt1 < X

IV. EXPERIMENTS

The performance of our method for the Fourier PR problem
is evaluated through numerical simulations using a large
image dataset. We analyze generalization capacity and com-
putational cost, comparing reconstruction performance against

both classical and state-of-the-art phase retrieval methods.
Noisy Fourier measurements are simulated using Eq. (1),
with average SNR values presented in Table I (SNR =
10 log(|||Fx|?||2/]ly?—|Fx/|?||2)). To ensure uniqueness (aside
from trivial ambiguities), we use an oversampled DFT with an
oversampling rate of m = 4n [16].

Our method is trained exclusively on natural images, using
a dataset of 44,000 images: 200 training and 100 validation
images from the Berkeley Segmentation Dataset (BSD) [17],
41,400 images from ImageNet [18], and 2,300 images from
the Waterloo Exploration Database [19]. We optimize the MSE
loss using decoupled weight decay regularization [20], cosine
annealing, and linear warming [21]. The model is implemented
in PyTorch and trained on an NVIDIA A100 80GB PCle
GPU over 60 hours (27 epochs). Our training follows the
InDI framework, where a structured degradation process pro-
gressively refines noisy images into clean reconstructions. Our
method is trained and tested for a fixed noise level of a = 3.

To assess generalization, we evaluate on both natural images
and other type of images corresponding to the unnatural image
dataset of prDeep. The test dataset, as used in [8], [22],
contains 236 images (230 natural and 6 unnatural), including
200 images from BSD, 24 from Kodak [23], and additional
images from [4]. All test images are 256 x 256 with pixel
values in [0, 255]. Evaluating on both image types allows us
to measure the model’s ability to reconstruct unseen samples
with varying characteristics.

In the initialization stage, HIO is run with m = 100
random initializations for s = 50 iterations. The £ = 10
reconstructions with the lowest residuals, ||y? — |Fx|?|2 , are
selected for further refinement using AER+HIO for n = 1700
iterations with a scaling factor ¢ = 0.6. In the iterative stage,
hyperparameters are set as K = 5, § = 0.9, and 0; = 1
for all 4. The learnable vector A € R” is initialized with
logarithmically increasing values from 107°-%4 to 1079-10, and
we set 7' = 4.

We evaluate reconstruction accuracy using PSNR and
SSIM [24]. For comparison, results are obtained on the same
test dataset using prDeep [4], HIO [25], DIR [8], and PnP
HIO [22], [26]. Table I reports the average performance
over 236 test images from 5 Monte Carlo runs. Our method
consistently outperforms all baselines in both PSNR and
SSIM, with significant gains over classical HIO. The results
after the initialization stage further highlight the substantial
improvement achieved through iterative refinement.

Table I also presents the reconstruction performance sep-
arately for natural and other images. Even though our net-
work is trained exclusively on natural images, it achieves the
highest PSNR for both image types, demonstrating strong
generalization. However, SSIM scores for other (unnatural)
images are occasionally lower, suggesting room for improve-
ment in capturing specific textural features. This discrepancy
can be attributed to phase retrieval ambiguities, particularly
spatial circular shift ambiguity, which affects reconstructions
of unnatural images such as “E. Coli” and “Yeast.” While
our model inherently mitigates trivial phase shift ambiguity
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via realness and positivity assumptions, we do not use ground
truth alignment to resolve spatial circular shifts. This choice
ensures a more realistic evaluation setting, as such ambiguities
remain unresolved in practical imaging applications. The lower
SSIM observed in some cases highlights the challenge of
reconstructing highly structured images where fine details play
a significant role in perceived similarity.

The effectiveness of our approach is visually demonstrated
in Fig. 2, where our method significantly reduces HIO artifacts
and better preserves image details compared to prior methods.
By explicitly considering the perception-distortion tradeoff,
our approach minimizes the smoothing artifacts common in
phase retrieval techniques [8], leading to sharper and more
perceptually realistic reconstructions. Compared to purely
optimization-based methods, our approach effectively balances
distortion minimization with detail preservation, ensuring that
reconstructions retain high-frequency textures while suppress-
ing artifacts.

TABLE I
AVERAGE RECONSTRUCTION PERFORMANCES FOR 236 TEST IMAGES
ACROSS 5 MONTE CARLO RUNS.

Method PSNR (dB) 1 SSIM 1 Runtime
Overall Natural Other Overall Natural Other (s) |
HIO [27] 18.92  18.89 20.34 043 043 043 0.27
prDeep [4] 22.06 22.09 2091 0.59 0.59 054 5941
DIR [8] 22.87 22.85 2350 0.68 0.68 071 21.72
PnP HIO [22], [26] 23.92 2392 2398 0.70 0.70 0.69 24.35
Initialization stage  20.17  20.12 22.09 0.51 051 054 090
12I-PR 26.78 26.85 24.18 0.73 0.73  0.61 1.11

12I-PR

Init. stage

Ground truth prDeep [4] DIR [8]

Fig. 2. The outputs of various algorithms for the “Cameraman” test image
subjected to o = 3 noise (SNR=31.61dB).

V. CONCLUSION

In this paper, we introduced I2I-PR, a data-driven phase
retrieval approach that unrolls classical solvers into a deep
iterative refinement framework inspired by image-to-image
pipelines. By incorporating advanced initialization strategies,
measurement consistency constraints, and a tailored diffusion
process, I12I-PR effectively refines multiple initial estimates,
leading to improved reconstruction quality and computational
efficiency. Unlike traditional diffusion-based methods that
start from random noise, our approach leverages informative
initial estimates to better utilize the denoiser’s capacity and
accelerate training. Experimental results demonstrate that 121-
PR outperforms both classical and deep learning-based phase
retrieval methods. Beyond phase retrieval, our framework has
the potential to generalize to broader inverse problems in
computational imaging.
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