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Abstract—Sparse signal recovery using the least absolute
shrinkage and selection operator (LASSO) and model-aided
deep learning is considered. We propose the Learned Soft-
Thresholding with Exact Line search Algorithm (LSTELA) deep
network architecture which is based on unrolling a successive
convex approximation algorithm. LSTELA incorporates debi-
asing through the use of the soft-thresholding with support
selection operator and revised step size rules as well as instance-
adaptive parameters. In addition, we introduce a novel piece-
wise differentiable approximation of the soft-thresholding with
support selection operator, which allows all model parameters
to be learned end-to-end, avoiding a computationally costly
gradient-free search. We further propose a lightweight LSTELA
variant to improve the computational efficiency. Compared to
state-of-the-art model-aided network architectures, the proposed
unrolling-based methods achieve a lower MSE in the case
of noise-contaminated measurements while exhibiting excellent
adaptation capabilities in case of changing data distributions.

Index Terms—deep learning, deep unrolling, compressed
sensing, successive convex approximation, sparsity, L1-tail-
minimization

I. INTRODUCTION

Sparse signal recovery is a critical task in signal processing
[1], exploited in diverse applications such as image-processing
[2], tomography [3], and communications [4]. In this context,
the least absolute shrinkage and selection operator (LASSO)
formulation is prevalent. Leveraging the convexity of the cor-
responding optimization problem, numerous low-complexity
iterative solvers have been developed to obtain LASSO solu-
tions. Classical examples include the Iterate Soft-Thresholding
Algorithm (ISTA) [5], the Fast Iterate Soft-Thresholding Al-
gorithm (FISTA) [6], and Least Angle Regression (LARS)
[7]. Relying on the successive convex approximation (SCA)
optimization approach, the alternative Soft-Thresholding with
Exact Line search Algorithm (STELA) works particularly well
in case of sparse problem instances [8]. As an extension, N-
STELA has recently been proposed, employing a Nesterov-
like momentum and empirically yielding a faster convergence
rate compared to STELA and FISTA [9].
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In recent years, deep unrolling has emerged as a pow-
erful instrument in sparse signal recovery [10], [11]. Deep
unrolling-based deep neural network (DNN) architectures rely
on the truncation of classical iterative algorithms, where each
iteration is reinterpreted as a DNN layer and then modified,
thereby introducing learnable weights. Thus, deep unrolling-
based DNNs retain the original algorithm’s structure and in-
terpretability while mitigating model mismatch by leveraging
data and reducing the computational cost.

A well-known application of deep unrolling is Learned
ISTA (LISTA) in [12], where linear operators and the sparsity
regularization are replaced by learnable weights. The authors
of [13] proposed Analytic LISTA (ALISTA), which exploits
analytically derived linear operators to significantly reduce the
number of learnable weights and increase the convergence
rate. In addition, a support selection excludes a “trusted” pro-
portion of entries from soft-thresholding, effectively reducing
the bias of the LASSO-based estimate. In [14], HyperLISTA
is proposed, which further incorporates momentum as well
as instance-adaptive thresholds and support selection, thereby
improving the robustness of the DNN against domain changes.
However, the proposed architectures in [13] and [14] are non-
differentiable w.r.t. the proportion of trusted support elements,
requiring manual tuning of the parameters.

Thus, inspired by [8], [9], [13], [14] we make the following
contributions:

« Utilizing soft-to-hard annealing [15], we propose a novel
piecewise differentiable soft-thresholding with support
selection operator that enables end-to-end training.

o We unroll N-STELA into the Learned STELA (LSTELA)
DNN architecture and the computationally more efficient
lightweight LSTELA (L-LSTELA) by integrating the
piecewise differentiable support selection into the DNN
as a bias-reducing technique and adopting an instance-
adaptive parametrization.

e We empirically demonstrate improved achieved mean
squared error (MSE) in case of noisy measurements as
well as enhanced adaptation capabilities compared to
state-of-the-art methods.
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II. SPARSE SIGNAL RECOVERY
A. Data Model and Sparse Signal Recovery
We consider the linear forward model

b=Azx*+ ¢, (D

where b € RM is an observation vector, * € RY is
the underlying sparse representation vector, A € RM*N 3
dictionary matrix, and € € RM is additive noise. The columns
a; € RM of A are the kernels associated with entries [z*],.
To recover «* from b for a known upper bound sparsity
level ||x*||o < s, under the assumption of zero-mean Gaussian
noise €, the maximum likelihood estimator for x* [16]
ireliRI}LHA:B—bH% st zll, <s )
can be formulated. Since the problem in (2) is nonconvex
and finding a global optimum is NP-hard, the ¢y-‘“norm” is
typically relaxed to the convex but non-differentiable /;-norm,
which still promotes sparsity in the solution. The Lagrangian
form of the resulting so-called LASSO is given as the convex
optimization problem
min
xR
where A > 0 is a regularization parameter that controls
the sparsity of the minimizer Z(\), which approximates the
targeted sparse representation x*.

1
5 Az = BlI3 + A1, 3)

B. STELA and N-STELA

The classical ISTA and FISTA perform a descent step
based on the ¢y-component of (3) and subsequently apply
a shrinkage, that accounts for the regularization, to find the
minimizer Z(\) of (3) [5], [6]. In comparison, the STELA is
based on SCA [8]. In each iteration ¢ + 1, it first obtains a
closed-form solution vector

B2 = dy' © Su (da 02 - AT (42 b)), @)

where each entry []B%a:(e)]i fori =1,..., N minimizes a local
(0.

© _pll?
a;[x],+A_x”; fbH2+)\|[a:}i|. ®)

approximation of the LASSO in (3) for fixed x_; = x
[B=”)

1

= arg min f‘

@ [m]ieR 2

Here, [da]; = ||ai||2, d;' denotes the elementwise inverse of
da and S,(z) the soft-thresholding operator, defined as

[Sa(2)]; = ll[2];| - la];]g" sgn ([z];) - (6)

In (5), x_; denotes the vector containing all elements of
except [x], and A_; refers to A without the kernel a;.

The STELA iterate wgfgla
of the SCA minimizer

2® = g® ¢ 40 (wa) - w(e)) 7 )

is a step into the descent direction

stela

where an exact line search on the majorization function

1 2
%Z) = arg min {2HA (m(z) + v (]B%a:(l) - az(l))) — bH
2

~v€[0,1]

9 (IB2 ]y~ 29111) } (10)
(©)

yields v, in (7) in closed form.

N-STELA [9] introduces a subsequent second descent step
along the past trajectory (miflla — :c(l’l)) similar to Nesterov
momentum [17] as

14 ¢ ¢ _
2D =2+ (alh - =) an
to improve the convergence speed. The step size fyég) can be

derived by similarly minimizing a tight upper bound on the
LASSO objective, resulting in the closed-form solution (8).

III. UNROLLED STELA

When leveraging the LASSO for the task of sparse signal
recovery, several problems arise. First, due to the convex
relaxation of the ¢y constraint, the LASSO introduces a bias
towards O for the support entries of a* [18]. Secondly,
the regularization parameter A that obtains the best estimate
is generally unknown. Thirdly, arriving at an estimate may
require a substantial amount of iterations. To tackle these
problems, we propose to apply deep unrolling to the N-STELA
algorithm. We first discuss debiasing the N-STELA algorithm
in III-A before unrolling it in Sec. III-B.

A. Differentiable Support Selection for Bias Reduction

Numerous approaches have been proposed to reduce the
bias resulting from LASSO-based methods, thereunder tail-
£1-minimization [19] and related methods such as (recursive)
Tail-FISTA [20], [21], Tail-STELA [22], iterative support
detection [23] or a bias correction for the final estimate [24].

To reduce the bias of the N-STELA, the local minimizer
Bz® and the step sizes 'yy) and 'yy) need to be considered.

Local Minimizer. Inspired by [13] and [14], we replace
the soft-thresholding operator S,, (2) by the support selection
operator [25], which is related to tail-¢;-minimization [20]-
[22]. Let p be the proportion of elements which are “trusted” to
be in the support set. Then, defining Q;_,(2) as the (1 —p)-
quantile of the absolute values |[z],|, the support selection
operator S2(z) is defined as

[SE(Z)L:{[z]Z7 |[z]z‘ > [a’]i A |[ZL| Z Ql—P(z)

[Sa(2)]; otherwise.

12)

The support selection operator in (12) excludes all entries of
z from regularization that both are among the pN entries
largest in magnitude and exceed the threshold a, while soft-
thresholding is applied otherwise.

Similar to A in (4), the proportion of trusted support ele-
ments p is a design choice that is a-priori unknown. However,
a disadvantage of the support selection operator is that the
partial derivative w.r.t. p does not exist, thus a “good” p must
be found through manual tuning or a grid search [13], [14],
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Algorithm 1 Learned STELA (LSTELA)
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[25]. To remediate this problem, we propose a novel smoothed
and piecewise differentiable support selection operator

S3(2) = Sa(2) + CZ (Sa (2)) (13)
as an approximation of (12), where the correction term C2(-)
mitigates the offset due to soft-thresholding in the support
set. In particular, let 7(2) : RN —{1,..., N} be a function
which ranks the magnitude of the elements [z] v 1€, for all
i # § we have [r(2)], # [r(2)], and [r(2)], < [r(2)], =
|[z];| <|[2],|- Then C§(2) is defined elementwise as

ez, = sen (=1sie (£ (T2 - - ) a9

where sig(z) = 1/(1 + e~ #) is the logistic function and
7 > 0 is an annealing parameter that determines how well
sig (-) approximates the unit step function. During training, 7
can either be kept constant or decayed to gradually evolve
the logistic function towards a hard threshold as 7 — 0
[15]. Note that the smoothed support selection increases
the computational cost during the training phase, requiring
a sorting operation with O(nlogn) complexity, while the
nondifferentiable support selection has O(n) complexity [26].

Step size. The bias-reduced local minimizer omits thresh-
olding the largest residuals in (4). To keep the line searches
consistent, we suggest to drop the regularization term in (10)
and analogously for the N-STELA-step, leading to

1
Az©O — )T A (Bz® — £©
vﬁ@l—[—(w ) A(Be w)], (15)
0

14 (Bz® - 2®)]|;
0, [ (e v A=)
[ R Y A R
2 0
B. Learned STELA
We now unroll L iterations of N-STELA to define the
model-aided Learned STELA DNN architecture. Based on (4)

stela

b)TA (Bw“) - w“)) +A (H]Bammnl - wwl)) /HA (B:N)
2(0) (22, — 2Vl - ||w£fila||1)) /A (. -

), o
)]
0

and leveraging the piecewise differentiable support selection
operator, we define a bias-reduced local minimizer

Bal) = 8, (20 - A" (429 ~b)). (1)

where we assumed normalized dictionary kernels, i.e., da =
1. In (17), A®) and p® become learnable parameters of layer
{. However, adopted from the work in [14], we select the
thresholds and proportions of trusted support dependent on
the instantiation of (A, b, x()). Specifically, we define

A = cipiq HAT (A:B(L]) - b) H1 ,
= [log (|| ab], /|| AT (42 -

(18)

o)[)], a2

with the hyperparameters c; and cé In (18), pa denotes the
mutual coherence max;; |al a; | The intuition is to estimate
the projected noise and residual error on a per-instance basis
and, if noise and the residual error after layer ¢ is assumed to
be low, decrease the threshold in (18) while simultaneously
expanding the trust region in (19). In contrast to [14], we per-
mit céé) to differ over £, which is feasible as z(L) is piecewise
differentiable in p(*) due to the smoothed support selection.
The proposed LSTELA method is summarized in Alg. 1,
where L is the number of layers and 6 = (cq, (cg)) /) are
the trainable weights.

Note that, compared to LSTELA, the methods proposed
in [13], [14] require the iterative precomputation of a weight
matrix to update the iterates for each dictionary matrix A,
which improves the convergence rate but can incur large
computational costs depending on the dictionary’s size. More-
over, the instance-adaptivity requires the precomputation of
the pseudoinverse At and additional matrix-vector products,
which increases the computational cost of both LSTELA
and HyperLISTA [14]. Hence, we additionally propose a
computationally more efficient variant of LSTELA, denoted as
lightweight LSTELA (L-LSTELA), which replaces A with
AT, consequently reusing the matrix-vector product in (17)
and thus not requiring any precomputations.

IV. SIMULATION RESULTS
A. Simulation Setup
We compare the proposed architectures to the state-of-
the-art ALISTA [13] and HyperLISTA [14]. All methods
are implemented in PyTorch and trained end-to-end using
minibatch stochastic gradient descent, thereby leveraging the
Adam optimizer [27] with a supervised MSE loss

2
L(M;8) = L) (b; 9) — z* ;. 0

|M| Z(w* b)eM H
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TABLE 1
TRAINING AND SIGNAL MODEL HYPERPARAMETERS

Base Training Hyperparameters

Number of Layers L 16
Adam(fB1, B2) (0.9,0.999)
Learning Rate 7 5x 1074
Dataset Sizes |Dirain|, | Dvail, |Dtest| 4096, 1024, 1024
Minibatch Size |M| 64
Maximum Number of Training Steps Tmax 2 x 10°
Ann. Constants 70, Tmin 1015 x 10°°
Ann. Decay Constants cp,1STA ; CLSTELA 5x 107425 x 1074

Base Data Model Parameters

Dictionary Dimensions M x N 250 x 500
Ground Truth Sparsity pp 0.1

where M C Dypain is @ minibatch. We reduce the learning
rate by a factor of 1/@ if the validation loss has not
improved over the last 10 training steps. After 10* steps
of no improvement, training is terminated. During training
of models employing the proposed piecewise differentiable
support selection, we adopt an exponential annealing schedule,
i.e., for each training step ¢, [7(t) = 7o exp(—ct)] .

We train and evaluate the models on synthetic data gener-
ated as in [13], [25] using the model (1). The entries [A]m. are
drawn from a standard normal distribution with subsequent
{5-normalization of the kernels a;. The ground truths x*
are generated as ** = z ©® h where z ~ Bern(pg) and
h ~ N(0,1). Additive noise & is sampled from A(0,c?)
with o2 = 10~SNR/10 || Ag*||2 /M for a given SNR in dB.
Unless stated otherwise, the training is conducted with the
hyperparameters shown in Table I. The model performance is
assessed using the normalized MSE w.r.t. the ground-truth =*

NMSE [dB] = 10log,, (|lz — =3 /ll=*3) . @D

To validate the piecewise differentiable support selection, we
consider ALISTA with manually tuned parameters p(© as in
[13], and ALISTA-d with learned parameters p(l). In ALISTA-
d, an independent parameter p(*) is assigned to each layer and
trained directly without instance adaptivity. All HyperLISTA
parameters are learned end-to-end as well.

B. Simulation Results

Fig. 1 illustrates the NMSE after each model layer. ALISTA
and ALISTA-d achieve a similar final MSE, showing that our
proposed smoothed soft-thresholding with support selection
operator enables end-to-end learning, thereby eliminating the
need for time consuming manual tuning or grid searches. Note
that we do not attain the same MSE for ALISTA and Hyper-
LISTA as in [13], [14] in the noiseless case, which can be
attributed to the significantly smaller training set compared to
[13], [14] and the absence of a curriculum learning approach.
In the absence of noise (Fig. 1 left), the proposed LSTELA
performs similarly to ALISTA, but its convergence rate is
slower than HyperLISTA. When considering the common case

of measurement noise (Fig. 1 right), both LSTELA and L-
LSTELA clearly achieve a lower noise floor than the ISTA-
based unrolled DNNs. In both cases, LSTELA and L-LSTELA
outperform the underlying iterative algorithm N-STELA.

C. Adaptivity Studies

One benefit of the instance-adaptivity is the increased
robustness of the model against changes in the domain. We
investigate the impact of deviations in the distribution of the
test dataset w.r.t. the training and validation data in Fig. 2.

Both LSTELA and L-LSTELA adapt excellently to changes
in the SNR, still achieving a lower MSE than HyperLISTA.
If the ground truth sparsity is decreased, both proposed algo-
rithms generalize well, whereas the performance significantly
decreases for an increasing pp, in particular for L-LSTELA.
This suggests that replacing the pseudo-inverse AT with AT
yields a worse estimation of the sparsity level if the problem
becomes less sparse. When adapting to a discrete cosine dic-
tionary in Fig. 2 (bottom left), LSTELA performs comparable
to a model that is trained for this data distribution, while the
adaptation performance of L-LSTELA is slightly deteriorated.
Note that HyperLISTA is significantly outperformed by both
proposed methods in this experiment.

V. CONCLUSION

We propose two DNN architectures, LSTELA and L-
LSTELA, based on unrolling an SCA algorithm, a novel piece-
wise differentiable soft-thresholding with support selection
operator and instance-aware parameter adaptation. Comparing
to state-of-the-art methods, the proposed LSTELA and L-
LSTELA trade convergence rate for a significantly improved
MSE in case of noisy measurements as well as enhanced
adaptation to unseen distributions.
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