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Abstract—We present an unsupervised deep-learning approach
for lifetime map reconstruction from noisy time-resolved fluores-
cence imaging (TR-FLIM) datasets. In the context of semicon-
ductor and photovoltaic device characterisation, this method is
critical for accurately predicting solar cell performance and de-
tecting early signs of degradation. More precisely, we consider an
unsupervised Noise2Noise (N2N) training framework combined
with physics-driven modelling for the quantitative reconstruction
of lifetime maps. The proposed approach incorporates a log-
linear fit in the N2N loss function and parameterises the unknown
maps as outputs of a shallow neural network with a multi-
branch architecture. By learning from multiple noisy acquisitions
of the same scene, our method effectively allows an accurate
estimation with shorter acquisition protocols, which translates
into a lower risk of damage for the sample under consideration.
Tests on simulated data and comparisons with available model-
based approaches show that the proposed approach improves
robustness w.r.t. noise levels with limited tuning of the regulari-
sation/algorithmic parameters.

Index Terms—Quantitative image reconstruction, Noise2Noise,
perovskite cell characterisation.

I. INTRODUCTION

Photovoltaic (PV) devices play a pivotal role in the global
shift toward a low-carbon economy by offering sustainable
solutions for light-to-electricity conversion. As the demand for
solar energy grows, optimising PV technology performance
and stability is crucial [1]. Advanced characterization tech-
niques, such as steady-state photoluminescence imaging and
time-resolved fluorescence imaging (TR-FLIM), are funda-
mental tools for analysing optoelectronic properties such as
carrier dynamics, defect densities, and diffusion lengths [2].
Here, TR-FLIM is employed to obtain spatially resolved maps
of the surface recombination rate and carrier lifetime in halide
perovskite thin films. After excitation at ¢ = 0, the long-time
(t > 0) PL intensity P(t) emitted by a semiconductor can be
described by a negative exponential time-dependent model,
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where for any measurement point n € {1,...,N} in the
detection array, the intensity is given by

P, (t) = 0p exp(—t/1y) (1)
with 6, = P,(0) > 0 representing the initial intensity

coefficient and 7,, > 0 is the material-specific decay time,
often called carrier lifetime. The § parameter can be related
to the surface recombination rate of a semiconductor.

Such characterisation could be quite challenging from a
practical viewpoint. First, in photoluminescence measure-
ments, a critical trade-off exists between data quality and sam-
ple preservation. Performing experiments with a high number
of accumulations — that is, many individual measurements
combined to form a single data point within a repetition of the
experiment — increases the signal-to-noise ratio (SNR), at the
price of longer experimental times. This can potentially cause
damage to the sample or alter the properties under analysis,
especially in the case of laser-sensitive materials such as halide
perovskite or organic materials. Shorter experimental times are
therefore preferable to minimise sample degradation, but this
comes at the cost of having noisier data. A reconstruction
pipeline robust to different SNR levels, thus requires effective
processing methods specifically tailored to PL data.

Lifetime maps can only be indirectly estimated by solving
the inverse problem modelled by (1), which, depending on
the quality of the data, could be a challenging task. In a
recent work [3], a variational approach combining robust noise
modelling with Structural Total Variation regularisation [4]
is employed to estimate such parameter maps. The method
has been shown to be effective, despite the tailored choice
of regularisation (prone to artefacts such as, e.g., staircasing)
and a heuristic strategy to identify the optimal regularisation
parameter, which may be inefficient as it requires the solution
of several instances of the underlying minimisation problem.
To overcome these limitations, one possibility consists in
considering learning-based techniques which enjoy better ex-
pressivity and limited parameter-tuning upon suitable training.
Note, however, that in the specific PL context described above,
having at disposal reliable reference parameter maps to be used
as clean samples presents a significant challenge, as they can
only be derived from high-quality data acquired under optimal
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conditions, a process that demands considerable resources and
technical expertise. To avoid such need, we then focus on
unsupervised deep learning techniques, a class of approaches
that allows training also under limited data.

Among the plethora of existing unsupervised approaches,
Noise2Noise (N2N) models [5] and their extensions (see,
e.g., [6]-[9]) are nowadays a prominent example which has
been widely used in applications. N2N is a fully unsupervised
approach solely relying on pairs of noisy observations of the
same scene for the training of the network parameters, thus
eliminating the need for clean ground truth data. Applications
of these approaches to photovoltaic materials can be found in
[10] for the restoration of a stack of noisy PL images acquired
at different wavelengths. Unsupervised approaches have also
been adapted to be used under data scarcity conditions. While
standard N2N methods necessitate indeed extensive training
on large datasets of image pairs, the works in [11]-[13] limit
training to solely multiple noisy realisations of the very same
scene. Given the absence of task-specific training examples,
such methods are also referred to as zero-shot methods in the
relevant literature. They are particularly valuable in scientific
imaging, where only multiple rapid acquisitions of the same
scene acquired under the same experimental conditions can
be obtained, while a complete training dataset that is compre-
hensive of multiple setups and acquisition protocols is often
challenging to obtain. Note that a similar paradigm to zero-
shot N2N, is the Deep Image Prior [14] where the core idea
is to transform a random input into an observed noisy and
distorted image by means of a deep neural network, with the
idea that it will generate a cleaner version of the image upon
early stopping.

Contribution: We propose a hybrid unsupervised N2N
deep-learning approach combined with physical log-linear
modelling for quantitative reconstruction of lifetime parameter
maps in PL applications. Drawing inspiration from zero-shot
N2N approaches, we take advantage of the availability of mul-
tiple noisy acquisitions of the same sample, which allows us
to benefit from mini-batching during the optimisation process.
We reparametrise the two unknown parameter maps in terms of
a single-input two-branched shallow neural network and con-
sider a suitable data term to be optimised in combination with
a mild cross-channel Structured Total Variation not requiring
any fine parameter tuning to avoid noise overfitting. Extensive
simulations and real-data reconstructions are performed in
comparison with plain pixel-wise linear regression and a
regularised variational technique proposed in [3].

Notations: We use standard common notation from deep
learning (B, C, N), with B representing the batch size, C' the
number of channels and N the size of the signal (that is,
images with dimension 11 X ny are assumed to be vectorised
so that N = n1ny). We use boldface for vectors and italics
for their scalar components. For simplicity, we omit explicit
indexing whenever all index values of the corresponding
dimension are involved. By © C R? d > 1 we denote the
space of network weight configurations so that § € ©.

II. MODELLING & PROPOSED APPROACH

In real-world experimental conditions, data collection oc-
curs over discrete time windows or gates, whose width w > 0
can be adjusted to control SNR. During the c-th measurement
window [t.,t. 4+ w,], the averaged intensity value

1 tetwe
Pop=— / P, (t)dt )
We te

is obtained. We refer to the set of all P, forc € {1,...,C}
and n € {1,..., N} as the photoluminescence cube. To sim-
plify our analysis, we can now convert the exponential rela-
tionship (1) into a linear form through a logarithmic transfor-
mation. Then, for every n € {1,...,N}and c € {1,...,C},
given the logarithmically transformed measurements

Pen 1= hl(Pc,n) 3)

and a punctual acquisition time t. (for sufficiently small
measurement window w. < 1), we seek for x1, = log(,,)
and x2, = —1/7, using the following linear model

Pen = T1n + z2,ntc- 4

The data collection process can be performed repetitively to
obtain multiple photoluminescence cubes of the sample under
analysis, thus allowing for an averaging of the results which
reduces the effect of acquisition noise and enhances the accu-
racy of the measurements. These multiple acquisitions can also
be stacked in an additional dimension, thus considering the set
of indices b= 1,. .., B and the tensors P = (P ¢ n)p,c,n and
P= (pb,c,n)b,e,rv

A. Noise2Noise (N2N)

The Noise2Noise approach [5] (and the self-supervised
denoising approaches inspired by it) relies on two key ideas.
The former is that a neural network Ny : REXN — ROXN
parametrised by 6 € © is used to model the reconstruction
process mapping noisy observations y — RE*Y into a
denoised one x € RE*N_ The latter is that, for its training, a
loss function £ : (RE*M)2 — R is used, which involves two
different noisy observation y"P" € RE*N and ytarget ¢ REXN
of the same clean image x € R“*" as a training pair

B
argmin Z ,C(Ng(yglpm)7 ytbmget), (5)
L ——

under the assumption that the noise is unstructured and in-
dependent. Hereabove, B corresponds to the dimension of
the training set. Extension of N2N to proper imaging inverse
problems such as, e.g., undersampled MRI data reconstruction
were also showed [5].

Note that while bypassing the need for clean reference
data, N2N approaches were originally applied using image
datasets containing multiple acquisitions with independent
noise realisations of the same scene. In scientific imaging and,
more in particular, for the type of application targeted here, the
construction of a proper dataset would demand considerable
time and resources. Note, in particular, that the acquisition
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parameters (such as temporal sampling intervals w.) are in-
herently experiment-specific and can vary significantly across
different experimental protocols. Dataset-free, or zero-shot
methods [11]-[13] are thus essential for feasibility.

B. N2N quantitative estimation of lifetime maps

Recalling (4), we design the N2N approach such that
given B acquisitions p € REXCXN and the corresponding
time steps t € Rg, a reconstruction of the desired quanti-
tative maps is obtained. We randomly choose a batch in-
dex b € {1,...,B} to be our input data and we process
it through a network Ng: RE*N — R2*N (whose weights
§ € © are trained using the remaining PL cubes b # b
as target data) to output the sought-for pair of parameter
maps ([Ng(p3)]1,[No(p;)]2). The training of the weights is
performed as follows. For each batch index b € {1,..., B} \ b
and each channel ¢ € {1,...,C}, to estimate the linear fits in
equation (4) we minimise J : © — R defined as

B C
0):=> > L(pve, No(@p)h + te[No(pp)l2)
=
+ AR([No (p)]1, [N (p)]2)
where £: (RV)2 — R is a suitable loss function and

R : © — Ris aregularisation function that reduces the risk of
overfitting and obviates the need for defining an early stopping
criterion, which is generally a challenging task. The parameter
A > 0 controls the regularisation strength.
Following [3], as far as £ is concerned, we consider the
Huber function defined by:
L(Xl, XQ)

e(x1,%2) (T1n —T20)  (6)

HMZ

— where, for z € R,

o) = {””
(12| - £)

— which enforces robust regression while preserving the reg-
ularity of the objective function. Note that such a choice
describes a mixture of Gaussian and impulsive noise in the
data, see, e.g. [15]. To promote spatial correlation between
the estimated maps [Ng(p;)]: and [Ng(pj)]2, along with
spatial consistency within neighbouring values, we considered
the Structure Tensor Total Variation (STV) regularisation [4]
which, for a two-channel image x = (x1,x2) € R**Y, is
defined in terms of the image gradient D : R2XN — R2x2xN
which for each i € {1,..., N} reads
T1,0;

L2, — T2,0;
Dx|; = ' I 7
[ }z |:$11 — T1,h; L2,5 — 962,}11} )
where the pair (v;, h;) € {1,..., N}? denotes the position of

the vertical and horizontal nearest neighbours of the i-th pixel.
For x € R2*N | the STV operator is thus defined as:

Z IDx]; I, ®)

for || < e
for |x| > €

1,4 —

STV(x

where || - ||, denotes the Schatten p-norm [16]. In this work,
we adopt a smoothed version of the case p = 2 (corresponding
to the Frobenius norm) defined as

Z 5 + xlv Ilvl) +(x2,i
+ (@1, — @1p,) + (22 — 28,)

— T2, )2

STV.( ;

where € < 1 is set a priori.

C. Network architecture

Following [13], we exploit a simple architecture with two
parallel branches emerging from a shared input layer, each
processing the sought-for map independently. Each branch
consists of two sequential blocks, where each block contains
a 3 x 3 convolutional layer, followed by a batch normalisation
layer and a Leaky ReLU activation function. The branches
conclude with a 1 x 1 convolutional layer. This double-
branched shallow architecture involves approximately 90k
parameters. We report a graphical illustration of the network
in Figure 1-(c).

III. EXPERIMENTAL RESULTS AND DISCUSSION

We validate our proposed approach on both simulated and
real TR-FLIM data, following the simulation/data analysis
procedure described in [3].

A. Data Simulation

Two synthetic PL datasets (Datal and Data2) with an image
size of n; = mo = 512 and including different geometries
were generated using a drift-diffusion physical model start-
ing from different physical values (see [3]). We considered
C = 300 time steps, uniformly distributed over an interval
of 1000ns. As shown in Figure 1-(a), we simulated data
characterised by two and three distinct regions, each defined by
specific values of log(d) and 7, which correspond to different
drift-diffusion parameters. The plots in Figure 1-(b) represent
the mean PL decay, that is, at each time step ¢ € {1, ..., 300}
the mean value of P, over time. The simulated PL data were
corrupted with additive Gaussian noise with a standard devia-
tion of 1072 and 10~3. To simulate multiple noisy acquisitions
of the same scene for our N2N approach, we generated B = 15
independent noise realisations. For the analysis, we focused
on fitting the measurements between 495 ns and 700 ns, as the
mono-exponential model is assumed to hold within this range
and the signal-to-noise ratio is sufficiently high to provide
meaningful estimations.

B. Hyper-parameters setting

For minimising (6), we need to set three hyperparameters:
the Huber function threshold € > 0, the smoothing parameter
for STV € > 0 and the regularisation parameter A > 0. In the
spirit of defining an approach with minimal fine-tuning, we
set ¢ = 1 (as in [3]), ¢ = 1073 and A = 107° and keep
this configuration in all our experiments. For optimisation,
we used Adam optimiser. We let the optimisation run for up
to 5000 epochs and set a threshold to 10~° for the relative
change between two epochs for the estimated maps and the
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Fig. 1. (a) Parameter maps related to our synthetic datasets Datal and Data2;
(b) mean PL decay (mean value of P over time) for Datal and Data2; (c)
illustration of our shallow two-branched NN Ny; (d) evolution of the loss
function for different initialisations of the parameters in Ng.

loss as stopping criteria. The network weights are initialised
using the default settings provided by PyTorch: Kaiming
Uniform Initialisation for the convolutional layers and identity
initialisations for the batch normalisation layers. We also tested
alternative initialisations to analyse the method’s robustness:
a Gaussian initialisation with mean 0.01 and std 0.01, a
constant initialisation to 0.01 and a uniform initialisation
over the interval [0,1]. The evolution of the loss over 1000
epochs in the case of Datal for the four initialisations is
reported in Figure 1-(d), which shows that the performances
are comparable. All experiments and simulations are run on
an RTX 2000 Ada Generation Laptop GPU.

C. Parameter Maps estimation results

We evaluate our results on synthetic data considering the
sum of Normalised Mean Squared Error (NMSE) w.r.t. the
ground-truth across both maps. This global metric is specif-
ically chosen to account for the different scaling factors
between the two maps, thus providing a balanced global
assessment of our model performance. Given an estimated
solution X € R2*N and the GT x°T € R?*¥N | such metric
is defined as:

ERR(X,x°T) =
N N

1 N 1 ~
] 2R X e 2 (e — )
T 1i=1 2 =1
where X§T € R and T & R represent the mean values of the

reference maps x§ and xST. We compare the results of our
N2N approach With a pixel-wise (PW) least-squares regression
and the regularised method (REG) from [3]. The optimal
choice of the regularisation parameter for REG was obtained
for each dataset with the L-curve principle by evaluating the
solutions for 30 candidate values spanning several reasonable
orders of magnitude. The choice of an adequate regularisation
parameter is crucial for the proper behaviour of such an
approach but could be tedious and time-consuming.

Table 1 presents the ERR values attained by the three
considered methods. For REG, we also report in brackets the
minimal ERR value among the 30 candidate solutions used

Noise level PW REG N2N

-2
Datal 10 14223 0.033 (0.016)  0.039
103 0.137 0.006 0.007

—2
Data2 10 33.85 0.176 0.033
10—3 8.473  0.012 (0.006)  0.002

TABLE I

ERR VALUES OF THE ESTIMATED MAPS

for the L-curve in case this method identified a solution where
REG performed significantly worse. This illustrates how such
a heuristic principle does not always recognise the optimal
parameter. For Datal, N2N performed slightly worse than
REG but the performances are rather comparable, whereas for
Data2 the N2N approach significantly outperformed REG.

In Figure 2 we report (in colour map viridis) the
reconstructions of the maps log(d) — first column — and 7
— third column — obtained with the different methods in the
case of a noise standard deviation of 1072, along with their
error maps w.r.t. the GT (in colour map red-white-blue)
which we denote as Alog(d) and A7 — second and fourth
column. The fifth column illustrates through a 2D histogram
the correlation between the values of the two variables, along
with their distributions in the form of 1D histograms placed
on the top/right axes. We highlight with red circles the three
(log(0),7) pairs corresponding to the three regions in the
image. The colour map illustrates the number of occurrences
(pixels) of a certain (log(d),7) pair in the map. While esti-
mating the 7 value for the star-shaped region represented a
challenge for all the methods, N2N managed to accurately
estimate the remaining values. In particular, the background
value of log(d) is an example of the superior performance
of our approach. Moreover, the error maps of REG highlight
how the star-shaped region is surrounded by a staircase-like
artefact, which is typical of TV-based regularisation. Note
indeed that the solution estimated by N2N best maximises
the correlation between the regions.

D. Test on Experimental Data

To assess the stability of our approach when dealing
with real data, we follow the methodology outlined in [3].
Specifically, we apply it to a dataset obtained with three
distinct acquisition protocols, each capturing experimental data
from the same sample location. This setup leads to varying
Experimental Times (ET) — approximately 4, 7 and 15 minutes
— across the different data sets, allowing us to evaluate the
robustness of our method under different conditions. Figure 3
shows the estimated lifetime maps obtained using PW, REG,
and N2N. The maps generated with PW exhibit significant
variations, while the estimates from REG and N2N are visually
very similar. This consistency aligns with the notion that the
parameter map being analyzed is intrinsic to the sample and
should remain unaffected by the acquisition process. The ab-
sence of a reference map prevents us from directly quantifying
the accuracy of our results. However, several observations can
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Fig. 2. Results on Data2 for noise standard deviation level of 102
First column: log(d) maps. Second column: difference from the GT for the
estimated log(6) maps. Third column: 7 maps. Fourth column: difference
from the GT for the estimated 7 maps. Fifth column: correlation plots between
the maps expressed in the form of 2D histogram.

Fig. 3. Estimated 7 maps on experimental data acquired on the same sample
location with different acquisition protocols having different total experimental
time — 15 minutes (first line), 7 minutes (second line) and 4 minutes (third
line) — yielding varying SNR and possibly introducing acquisition artefacts.
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be made. N2N produces more textured results, and as demon-
strated in the previous section, it would have been capable of
reconstructing piecewise constant distributions had they been
present in the data. In contrast, the REG reconstruction may
be affected by oversmoothing, a common issue with total
variation regularisation when the regularisation parameter is
too strong. Additionally, as shown in the previous section, the
heuristic method used to set the regularisation parameter does
not always identify the optimal value, which further supports
the concern regarding over-smoothing with REG.

IV. CONCLUSIONS

We have presented a Noise2Noise approach for the quantita-
tive reconstruction of lifetime parameter maps from noisy pho-
toluminescence data in perovskite solar cells. By combining a
physical log-linear modelling with an unsupervised training of

a multi-branch shallow neural network, our method effectively
addresses key challenges in PV characterisation: balancing
estimation quality with minimising sample degradation while
requiring limited parameter tuning. Our experimental results
demonstrate that the proposed approach achieves comparable
or superior performance to model-based methods without
requiring extensive parameter tuning or clean reference data.
The method provides robust performance across different
data configurations and noise levels, preserving both global
structures and fine details in the parameter maps as evidenced
by quantitative metrics and more accurate distributions of
the parameter values. Future work will test more expressive
network architectures and tackle directly the original non-
linear model. Our codes are available at https://github.
com/gbrscr/N2N4LifetimeMaps.

REFERENCES

[1] F. J. M. M. Nijsse, J.-F. Mercure, N. Ameli, F. Larosa, S. Kothari,
J. Rickman, P. Vercoulen, and H. Pollitt, “The momentum of the solar
energy transition,” Nat. Commun., vol. 14, no. 1, Oct. 2023.

[2] S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda, J.-B. Puel,
Y. Vaynzof, J.-F. Guillemoles, D. Ory, and G. Grancini, “Imaging and
quantifying non-radiative losses at 23% efficient inverted perovskite
solar cells interfaces,” Nat. Commun., vol. 13, no. 1, May 2022.

[3]1 G. Vidon, G. Scrivanti, E. Soret, N. Harada, E. Chouzenoux, J.-C.
Pesquet, J.-F. Guillemoles, and S. Cacovich, “Rapid and noise-resilient
mapping of photogenerated carrier lifetime in halide perovskite thin
films,” Adv. Funct. Mater., vol. 34, no. 37, 2024.

[4] S. Lefkimmiatis, A. Roussos, P. Maragos, and M. Unser, “Structure
tensor total variation,” SIAM J. Imaging Sci., vol. 8, no. 2, 2015.

[51 J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala,
and T. Aila, “Noise2noise: Learning image restoration without clean
data,” in Proceedings of the 35th International Conference on Machine
Learning, vol. 80. PMLR, 2018.

[6] N. Moran, D. Schmidt, Y. Zhong, and P. Coady, “Noisier2noise: Learn-
ing to denoise from unpaired noisy data,” 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[71 A. Krull, T.-O. Buchholz, and F. Jug, “Noise2void - learning denoising
from single noisy images,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[8] J. Batson and L. Royer, “Noise2self: Blind denoising by self-
supervision,” in International Conference on Machine Learning.
PMLR, 2019.

[9] T. Huang, S. Li, X. Jia, H. Lu, and J. Liu, “Neighbor2neighbor: Self-
supervised denoising from single noisy images,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[10] K.Ji, W. Lin, Y. Sun, L.-S. Cui, J. Shamsi, Y.-H. Chiang, J. Chen, E. M.
Tennyson, L. Dai, Q. Li, K. Frohna, M. Anaya, N. C. Greenham, and
S. D. Stranks, “Self-supervised deep learning for tracking degradation of
perovskite light-emitting diodes with multispectral imaging,” Nat. Mach.
Intell., vol. 5, no. 11, 2023.

[11] Y. Quan, M. Chen, T. Pang, and H. Ji, “Self2self with dropout: Learning
self-supervised denoising from single image,” in JEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.

[12] J. Lequyer, R. Philip, A. Sharma, W.-H. Hsu, and L. Pelletier, “A fast
blind zero-shot denoiser,” Nat. Mach. Intell., vol. 4, no. 11, 2022.

[13] Y. Mansour and R. Heckel, “Zero-shot noise2noise: Efficient image de-
noising without any data,” in 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 1EEE, 2023.

[14] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 5, 2018.

[15] L. Calatroni, J. C. De Los Reyes, and C.-B. Schonlieb, “Infimal
convolution of data discrepancies for mixed noise removal,” SIAM J.
Imaging Sci., vol. 10, no. 3, pp. 1196-1233, 2017.

[16] G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J.-C. Pesquet,
“A nonlocal structure tensor-based approach for multicomponent image
recovery problems,” IEEE Trans. Image Process., vol. 23, no. 12, 2014.

1711



