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Abstract—This work focuses on joint image denoising and
contour detection. On the one hand, contour detection on clean
images (without noise) has been extensively studied from both
variational formulation and deep learning perspectives. On the
other hand, although the task of jointly denoising and contour
detection has been largely considered in image processing lit-
erature using variational formulations, it has not been handled
from the model-based neural network perspective. In this work,
we propose an unfolded discrete Mumford-Shah procedure that
enables us to bridge the gap between standard variational
procedures designed to perform the combined denoising/edge
detection task and black-box neural network designed for edge
detection purpose.

Index Terms—Edge detection, image denoising, Mumford-
Shah, proximal algorithm, model-based neural networks

I. INTRODUCTION

Edge detection plays a pivotal role in image processing and
computer vision. It aims at extracting a structural information
by delineating objects boundaries and significant intensity
transitions, providing a compact yet powerful representation of
visual data. Edge maps are then essential for numerous down-
stream tasks, such as image segmentation, object recognition,
and scene understanding. For instance, edge detection is used
in experimental physics to identify hydrodynamic regimes by
analyzing the phases of contact areas [2]. More recently, in [3],
edge information has played an important role as structure-
guided priors in diffusion model.

Traditional edge detection methods, such as those relying on
gradient computations [4], excel at localizing edges but are of-
ten not well adapted to handle challenging cases such as noisy
scenes, shadows, or textures. To overcome these limitations,
it is then necessary to use image regularization that remove
useless details while preserving critical boundaries. In this
context, variational approaches have been instrumental, includ-
ing the Mumford—Shah (MS) model [5] and related methods
proposed by Geman and Geman [6] and Blake and Zisserman
(BZ) [7]. These methods enable smoothing homogeneous
regions while preserving sharp boundaries of these regions.
Variational approaches have further the advantage of providing
theoretical guarantees for the output solution. However, as they

This work is partly funded by the Fondation Simone et Cino Del Duca -
Institut de France. The work of AR was partly funded by the EPSRC grant
EP/X028860/1. The authors thank the Centre Blaise Pascal of ENS Lyon for
the computation facilities. The platform uses SIDUS [1], which was developed
by Emmanuel Quemener.

ISBN: 978-9-46-459362-4

1717

are highly iterative and necessitate hyperparameter tuning, they
can appear to be computationally inefficient. Consequently,
deep learning (DL) methods for edge detection have emerged
in the last decade, shifting from traditional handcrafted meth-
ods to data-driven approaches learning hierarchical features.
Early CNN-based methods, such as DeepEdge [8] and Deep-
Contour [9], improved upon previous techniques [4], [6], [7]
but faced limitations in handling complex scenes. Advances
like HED [10] and BDCN [11] introduced multi-scale learning
and parameter optimization, enhancing accuracy. Transformer-
based models, such as EDTER [12], leveraged self-attention
to capture both local and global features but required post-
processing to refine thick edge maps. Diffusion models like
DiffEdge [13] addressed this issue by producing sharper
edges without additional refinement. However, deep learning
methods have grown increasingly complex, leading to higher
computational costs and slower inference.

In the last decade, hybrid methods that combine variational
methods and neural networks have become increasingly pop-
ular for image restoration, as they combine network efficiency
with variational robustness and interpretability. Inspired by this
success, we have recently proposed such a hybrid approach in
[14] for edge detection in a noiseless context. Specifically,
we derived an unfolded scheme that relies on an iterative
procedure that mimics the BZ minimization strategy, combined
with an edge detection layer. The resulting network offers a
robust method for edge detection with a lighter architecture
compared to other recent DL-based models.

In this work, we develop an unfolded network jointly han-
dling the denoising and edge detection tasks, by introducing
a novel framework grounded in the MS model. Specifically,
we unfold an alternating proximal scheme (dubbed SL-PAM)
designed for minimizing the non-convex Discrete MS (DMS)
model proposed in [15]. By unfolding SL-PAM, our approach
enhances image denoising and edge detection capabilities,
improving edge granularity control in a natural manner without
requiring additional post-processing step.

Contributions and outline — The contributions of this work
is then the development of a novel unfolded optimization
framework for edge detection for noisy images (Section III)
relying on DMS solved with SL-PAM (Section II). Note that
the proposed unfolded network hence solves the non-convex
problem of jointly estimating the denoised image and its
contours. We further evaluate the effectiveness of the proposed
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method through extensive experiments in Section IV, achiev-
ing competitive results compared to state-of-the-art variational
approaches and deep learning models.

Notations — In the remainder of this paper we will use
the following notations. Let x = (x1,...,xc) € RV*C be
a matrix containing a vector-reshaped image x. € RY in
each column ¢ € {1,...,C} (corresponding to a channel
such that C = 3 for RGB images) and N the number
of pixels in a channel. Let e = (eq,...,e ) € RV*E
be a matrix containing an edge map e; = (e,¢)1<n<n IN
each column ¢ € {1,...,L} where L is the number of
edges. Let ¢: RN — (—o0,400] be a proper convex, lower
semicontinuous function. The proximity operator of v at x is
given by prox, (x) = argml\iln Y(v) + 1v —x|3.

veR
II. MS FUNCTIONAL AND MINIMIZATION ALGORITHMS
A. Discrete Mumford-Shah

The continuous MS model [5] aims to recover both a smooth
image and its edges, from a possibly degraded input image. In
its discrete version (DMS), proposed in [15], edges are defined
between neighbouring pixels, leading to horizontal and vertical
edges in the image. Specifically, considering a noisy image z
to analyse, the DMS formulation is expressed as

f(x) + Bh(x,e) + Ag(e). (1)

where £ is the loss function to minimize, f: RV xC
R: x — 3||x — z||3 is the data fidelity term for denoising,
B,A > 0 are regularization parameters, and / and g are
regularization terms defined as follows. The first term h
imposes regularity on X, penalizing variations everywhere

except on the edge map e, i.e.,
C

ol —e)© (Dx,)]3 ©)
c=1

where © denotes the element-wise multiplication, and
D: RY — RN*2 denotes the linear operator computing the
concatenation of the horizontal and vertical discrete gradient
operators (i.e., the total variation linear operators). In other
words, D maps an image x. to the edge domain. The second
term g: RV*2 — (—o0, +-0c] aims to promote sparsity on e
by penalizing the edge length. For instance g can be chosen to
be the ¢y-pseudo norm, the ¢;-norm or a quadratic ¢;-norm,
also known as the BerHu function [15].

Proposed multichannel edge model — In this work, instead
of restricting the edge maps to horizontal and vertical edges
in the image, we consider a linear operator D: RY — RN*E
mapping images to a feature domain with L channels , i.e., we
consider a multichannel edge map e = (ey,...,er) € RV*E,
In this case, for simplicity, we assume that the regularization
on e, g: RV*L — (—o0, +00], is additively separable (i.e.,

gle) = Ze 1 9n,e(en ¢); for instance the ¢;-norm).

min L(x,e) :=
x,e

h(x,e) =

B. Variational approach

A strategy to solve the minimization problem (1) is to use
alternative minimization algorithms such as Proximal Alternat-
ing Linearized Minimization (PALM) [16] or Semi-Linearized

Proximal Alternating Minimization (SL-PAM) [15]. While
PALM alternates a proximal-gradient step over x and one
over e, SL-PAM relaxes the proximal-gradient step over e
for a proximal one, allowing a wider choice of step-size and
providing a more efficient algorithm. Following on from [17]
where it was shown that between two algorithms minimizing
the same problem, a fast algorithm was more efficient when
unfolded, we will focus on SL-PAM in what follows.
The associated iterations can be reformulated as:

For £k =0,1,...
sli+1] = b By p ) glk])
Ch
k+1] _ [k+1] 3)
X proxclzlf (x )

e[k+ 1 — prOX (,Bh( k+1]’ ) + )\g(-)) (e[k])

where x[0 e RNXC, el € RVNXL On the one hand, the
data-term update (first two lines in (3)) simply leads to

1] =l 2IpT (1 o) 0 DxlM),
Ck
4)
S[k+1] (
(] _ 2 aX
cr,+1

On the other hand, the update of the edge variable in the last
line of Algorithm (3) takes a closed form as g is additively
separable, i.e., for every (n,¢) € {1,...,N} x{1,...,L},

[k+1] [k]
+ dre
egi:zrl] =PIOX__ A g, LY, [k-‘rl] ®)
R It \ Bl g,

n,L

where ,B[k'H] 2/ [ k“}

If, for every k € N, ¢, > 25||D||2 and dj > 0, then the
sequence (x[k] elk ]) keN converges to a critical point of the
minimization problem (1)-(2) [15, Prop. 2].

III. MUMFORD-SHAH PROXIMAL NEURAL NETWORK

In this section, we propose to design an unfolded neural

network based on the DMS structure described in Section II-A,
which aims to estimate a denoised image X and associated
edges € € RN from a degraded input image z.
Feedforward networks — The proposed neural network
has a feed-forward structure. It means that it can be written
as a concatenation of a fixed number K of layer operators
T,o,: s RVXC 5 RNXL y RNXC o RNXL - parametrized
by the input noisy image z and learnable parameters Oy
(e.g., hyper-parameters, convolution kernels). For each layer
k € {1,..., K}, the associated operator can be written as

TZ7@,€: (X7 e) S RNXC X RNXL — nk(Wk(x, e) + bk)

involving a (learnable) operator Wy, a (learnable) bias by
and a non-linear activation function 7. In recent works [17]-
[19], it has been shown that networks whose layers are based
on proximal iterations achieve state-of-the-art performance in
denoising or reconstruction. In this work we unfold the SL-
PAM method described in Section II-B.
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Proposed DMS—PNN network — We are now ready to describe
the architecture of our unfolded network, dubbed DMS—-PNN,
that consists in unrolling the SL-PAM iterations in (3) for
solving the general DMS model introduced in Section II-A
with e € RV*Z, The DMS—PNN can be expressed as

(6)

where xo = z and ey = 0. For every k € {1,..., K}, the
layer T, o, alternates between a layer dedicated to updating
the image, taking into account both the edges and the contents
of the image, and a second layer for updating edge informa-
tion, i.e., for every k € {0,..., K — 1},

(x[k+1],e[k+1]) =T, 00 (x[k],e[k])

df@(xo’ eo) = TZ7@K ©---0 TZ,@1 (XO, eO);

=T, 6., (Tz,Gx,k (X[k-]7 e[k]))_ (7
N —’
- (X[kﬂ]’e[’cl)

According to Algorithm (3), each sub-layer is defined as
X[kJrl] == nx,k (Wx,k'(x[k]a e[k]) + bz,x,k) ) (8)
e[kﬂ] = ne,kvx[kﬁ»l] (We’k(x[kJrl],e[k]) + be,k) s

with

W (xlH ) = e (x4 - 24D ] (1-e)20 D)),
bz,x,k = ck%’
Nx,k = Id7

5},}[ + di

)

We k(x[kﬂ]’e[k}) - (

be,k = Oa

) 1<n<N,1<¢<L

)

Ne,kxk+1] = Prox  x,
~[k] g
Bretdk

n,l

' >1<n<N,1<£<L
. €))
for = 28, [Dkx[k+1]] - Hence, by construction
DMS PNN is an unfolded scheme with learnable parameters

={D1,....Dx, (Br, \)o<k<ix -1}

IV. NUMERICAL EXPERIMENTS
A. Training settings

Dataset — Our experiments are performed on the BSD500
dataset [20], containing multiple hand-drawn groundtruth con-
tours for each image. We denote (€;,2zs)sc1 our fraining
set, and (€s,2s)scy our test set. For both sets, € are the
exact edges obtained by stacking all the provided groundtruth
annotations, and z, consists of an input image degraded with
Gaussian noise with standard deviation 6, > 0 distributed
according to a uniform distribution in (0,0.1).

Training setting — We consider a hybrid loss function com-
bining the weighted binary cross entropy (BCE) loss [10], and
the MSE loss. These are common choices in the literature
for training networks for edge detection and for denoising,
respectively. The resulting training problem is thus of the form

Oc Argmm ZBCE &,,eX) + aMSE(x,,xX)  (10)
sel

where (xX, K) = dfo(2s,0) is the output of the DMS—~PNN,
el = Ze:1 ¢, /L is the mean edge map obtained over the
L channels of Ef , &> 0, and the BCE loss is given by

BCEee

HMZ

—wn (en log(e )
+(1—eX)log(1 —an)),

where (wy)1<n<ny € RY denotes the class-balance weights
between the edge pixel set £, = {n € {1,...,N}[e, = 1}
and non-edge pixel set E_ = {n € {1,..., N}|¢, = 0}, that
is,wp, = |E_|/|EftUE_| when€, =1l and w, = |E1|/|E+U
E_| when &, = 0.

The training is then performed using the Adam optimizer
[21] on Pytorch, with learning rate 1073, batch size 3, and
image sizes 321 x 481 or 481 x 321.

Architecture choices — We incorporate the noise level of
the data z,; in our architecture by multiplying the learned
parameters (A, Ok)o<k<k—1 by the standard deviation ds.
Hence the noise level is an additional input to our network,
similarly to noise-aware networks such as DRUnet [22] and
PNNs [18], [23]. The step sizes parameters (cx, dg)o<k<k —1
are chosen to satisfy theoretical conditions (see Section II-B):
Cr = 255kl|DkH2 and d;, = 25)\k77||Dk||2 with n = 2.10~4.

B. Results and analysis

Impact of the training loss — We evaluate the training
efficiency for two choices of o in (10): o = 0 (loss only based
on BCE) and o = 0.15 (loss that combined MSE and BCE).
The results are displayed in Figure 1. We observe that while
the edge detection is only slightly impacted by the choice of
«, the performance in terms of denoising are improved when
a > 0, motivating the use of the proposed hybrid loss.

Impact of the noise-aware parameter 5 — In Figure 1 we
evaluate the impact of the free parameter § on the output.
Based on the previous conclusions, we focus on the results
obtained with v = 0.1. We observe that § acts as a threshold
parameter on the edges: smaller is ¢, and the more the details
in the edge map. We observe that large J values smooth the
denoised images, and hence degrade the PSNR values.

Comparisons with state-of-the-art — In Figure 2, we
focus on edge-detection performance and compare the results
obtained with standard DMS based on SL-PAM iterations
[15] (cf. Section II), DiffEdge [13] (only designed for edge
detection), and with the proposed DMS—PNN (with § = 0.001
and § = 0.1). The number of parameters for each approach
as well as their inference time are summarised in the table
below:

| |O] | Inference time (s)
DMS [15] - 12 £ 2.1
DiffusionEdge [13] | 137,142,150 10 £ 2.3
DMS-PNN 17,320 0.09 £+ 0.03

We observe that state-of-the-art methods provide less de-
tailed edges. Especially DiffEdge, a pure black-box neural
network architecture whose goal only focuses on estimated
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Noisy image

0 — BCE loss

«

Fig. 1. Loss impact (choice of paramter o) — First column: Noisy image z (top) with standard deviation 0.025 and ground-truth edges e (bottom). Second to
fourth columns: Results obtained with DMS—PNN for different values of 6 = {0.001,0.01, 0.1} (the noise-aware parameter given to DMS—PNN when evaluated).
The first two rows show results obtained with a = 0 (i.e., purely BCE); and the last two rows show results with a = 0.1 (i.e., hybrid BCE-MSE). The
performance are evaluated in terms of standard Peak Signal to Noise Ratio (PSNR) and Cross Entropy (CE) computed as CE(e, ef) = — 25:1 & log(el).

ground-truth data. In comparison the standard DMS and the
proposed DMS—PNN capture more detailed edges.

V. CONCLUSION

In this work we derive the first model-based neural network
for joint image denoising and edge detection, designing a
tailored proximal unfolded neural network. We illustrate the
impact of the loss and of a noise-aware hyperparameter
through simulations. We also illustrate the benefit of the
proposed DMS—PNN compared to state-of-the-art methods,
both in terms of performance and computational efficiency.
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