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Abstract—In remote sensing applications, the demand for
extensive data processing algorithms continues to grow expo-
nentially. At the same time, assessing the frugality of data
processing algorithms has become a priority in the machine
learning and artificial intelligence community. However, defining
a quantifiable measure that combines performance and energy
consumption remains a complex challenge. This paper introduces
a methodology for collecting energy consumption data and
presents three different frugality scoring methods. Through a
case study of two classical data processing tasks in remote sensing
(change detection and clustering) we demonstrate that these three
scores capture different aspects of frugality. We further suggest
a combined approach for users to achieve a more comprehensive
assessment.

Index Terms—frugality, multi-criteria index, energy consump-
tion, remote sensing, data processing

I. INTRODUCTION

While machine learning and artificial intelligence tools
became prominent processing methods in remote sensing [1],
the ecological impact of AI tools and machine learning models
is growing exponentially [2], [3]. Therefore, further research is
essential for both the evaluation and the improvement of their
frugality [2] for remote sensing practitioners. In this paper,
we define frugality as the pursuit of low energy consumption
while ensuring satisfactory performance of the chosen method.

Measuring frugality can be challenging, and the ecological
or energetic cost of a method is often estimated by the runtime
[4], [5]. It has been shown that runtime does not capture all the
information about energy consumption [6]. Other metrics such
as algorithm complexity or the number of lines of code can
also be used [7], [8]. However, they only provide an estimate
of a theoretical running cost, which is difficult to translate
into a carbon footprint. Thus, several energy consumption
measurement tools have been published such as CarbonTracker
[9], CodeCarbon [10] or Experiment Impact Tracker [11].
Finally, another approach is to directly measure the energy
consumption of the system using an external connected device.
If the measurement frequency is sufficiently high to capture
precise energy consumption data during runtime, this method
provides an accurate assessment of the energy consumption of
the studied approach, taking every component of the system
into account.

Evaluating frugality involves combining the estimated
energy consumption of the method with its performance.

Several studies focus on combining the performance of a
method with its running time [5], [12], but the literature lacks
studies that propose scoring methods based on empirical
energy consumption. In this regard, many different approaches
exist to create a multi-criteria index. Although the use of
weighted sums to aggregate metrics has been criticized [13],
it remains a commonly used multi-criteria scoring method
[14]–[16]. Fuzzy-logic-based approaches have also gained
popularity for this type of task [17], [18]. However, they have
not been applied in frugality, and require expert knowledge to
define the decision boundaries and may not scale well across
different data processing methods.

In this paper, we address, for the first time, the issue
of estimating frugality for remote sensing applications. We
propose:

• an energy consumption and performance measuring
pipeline for frugality evaluation1,

• a framework of metric combination to assess frugality
through three scoring methods,

• a case study on two classical methods for remote sensing
data: change detection and clustering.

II. MEASURING ENERGY CONSUMPTION

t0 t1 t2 t3

E

Standard periodLatent timeRunning period
t

P (t)

Fig. 1: Example of energy consumption measure E over data
processing method runtime.

The scoring of frugality requires accessing internal and
external hardware and software measures. In this work, we
focus on the global energy consumption of a task on a local
working machine measured using a smart plug connected to an
InfluxDB database through a Z-Wave protocol. Measurements
are made through three periods of time: a standard period
with no algorithm running, a latent time with a single training
execution, and a running period. Let P (t) be the power

1https://github.com/MattVerlynde/frugal-score-2025.git
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measure at time t, t0 the start of the standard period until
t1 the start of the latent time, and t2 the start of the running
period until t3. These periods are represented in Fig.1. The
measured energy consumption E, used to evaluate frugality,
is then calculated following eq. (1):

E =

∫ t3

t2

P (t) dt− t3 − t2
t1 − t0

∫ t1

t0

P (t) dt. (1)

The standard period allows us to exclude the background
processes of the machine used to run the algorithm of interest.
The latent time consists of a period during which the algorithm
of interest runs once, giving time for the machine to warm
up and reach a running state with higher temperature. This
workflow ensures to collect only the energy consumption
measure due to the execution of the algorithm.

Once these data are collected, the performance of the
method is measured according to the task. Evaluating frugality
then requires the aggregation of both measurements, for which
a framework is presented in the next section.

III. SCORING FRUGALITY

A frugality score provides an easy-to-read frugality assess-
ment of a method and motivation for practitioners to focus
on energy-efficient methods. Creating such a score requires
combining both the performance of the method α on the
targeted task and the energy consumption β during runtime.
A common way to combine two metrics is to use a weighted
sum. However, this method requires normalizing the metrics of
interest, which introduces a bias in the data. We set ϵ ∈ [0, 1]
the weight given to the performance of the method compared
to the energy consumption, and αn ∈ [0, 1] and βn ∈ [0, 1] the
normalized values of α and β respectively. This score sWS is
then shown in eq. (2):

sWS = ϵ× αn + (1− ϵ)× (1− βn), (2)

where αn =
α−min(α)

max(α)−min(α)
, βn =

β −min(β)

max(β)−min(β)
.

Another method combining these metrics is the harmonic
mean, similarly to the calculation of the F-measure for the
precision and recall metrics for a classification task. We choose
this method because it is particularly adequate for combining
ratios [19] and is therefore ideal for our normalized metrics
αn and βn. We set κ ∈ R+ the weight given to the energy
consumption and the harmonic mean sHM is calculated as
shown in eq. (3):

sHM = (1 + κ2)
αn(1− βn)

κ2αn + (1− βn)
. (3)

Since these two scores require the normalization of both
the performance of the method and the energy consumption
metrics, they are highly dependent on the specific experiments
conducted and not easily scalable to additional experiments.
Thus, we propose a frugality score sF inspired by [5]. This
score is based on both metrics α and β, with a weight

w ∈ [0, 1] assigned to the available resource—here the energy
consumption—in contrast to the method’s performance. This
score is shown in eq. (4) and the dependence on the weight
w is unique for each method and input data used:

sF = α− w

1 + 1
β

. (4)

IV. RESULTS

In this section, we will present two case studies on which
these frugality scores are analyzed.

A. Task descriptions

To evaluate the efficiency of our frugality scores on remote
sensing applications, we focus on a clustering task and a
change detection task—two classical tasks in remote sensing
data processing.

1) Clustering: The clustering task is an unsupervised ap-
proach. Because of its complexity, the literature lacks bench-
mark clustering datasets based on remote sensing data. There-
fore, in this paper, classical clustering approaches were applied
to a toy dataset presenting 5 blobs of data along 5 features,
adapted to 5-group clustering algorithms. It can represent a
case of clustering based on land cover for remote sensing
applications, for example. The selected clustering methods
included : two hierarchical clustering methods, Agglomerative
Clustering using the average of the cityblock distances of each
observation to form clusters, and Ward using the variance of
the clusters ; four density based methods, DBSCAN, OPTICS,
HDBSCAN and GMM ; and both the K-Means and K-
Means++ methods. The parameters of each method were
chosen to maximize the adjusted Rand index (ARI) calculated
between the clustering result and the initial known clusters
defined by the data blobs. Indeed, the ARI presented in eq.
(5) standardizes the Rand index (RI) by the expected RI
guaranteeing that a random clustering returns a zero value:

ARI =
RI − E(RI)

max(RI)− E(RI)
, where RI =

a+ b(
n
2

) , (5)

n is the number of instances,
a is the accurate number of pairs in the same cluster and
b is the accurate number of pairs in different clusters.

2) Change detection: To evaluate the frugality scores on
the change detection task, three algorithms were applied to
remote sensing data. These data consist of 2 PolSAR images
of 3 bands from the UAVSAR database (Courtesy NASA/JPL-
Caltech) [20]. Ground truth data, presented in Fig.2, were also
available from [21]. Each image was cropped to a size of
1000× 500 pixels. To consider the multivariate aspect of the
data (three polarization bands of each image) and the speckle
noise, we use methods based on the covariance matrices
between each band at each pixel. Thus, with p bands per
image, T multi-band images, N pixels per band, we consider
x
(t)
k for t ∈ [[1, T ]] and k ∈ [[1, N ]] a sample of pixels of

all bands in a sliding spatial window of the image. For this
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task, we consider x
(t)
k as the realization of a random vector

following a probability model px(xk, θt) where θt is the set
of parameters at time t. The change detection is then defined
as the detection of change of these parameters, so comparing
two hypotheses H0 : θ0 = θ1 and H1 : θ0 ̸= θ1.

Our test statistics are based on the covariance matrix
θt = Σt of the polarimetry features on a local batch. The
first test statistic used is the Generalized Likelihood Ratio Test
statistic (GLRT). We consider this test under the assumption
of Gaussian distribution of the pixel values, and therefore we
refer to this method G-GLRT in this paper. The calculation
of the test statistic Λ̂G used in this case is shown in eq. (6):

Λ̂G = T pkT

T∏
t=1

∣∣∣x(t)
k x

(t)
k

H
∣∣∣k∣∣∣∣ T∏

i=1

x
(t)
k x

(t)
k

H
∣∣∣∣kT

. (6)

Here we consider the sample matrices x
(t)
k as realizations

of independent random variables x
(t)
k ∼ CN (0p,Σt). The

implementation chosen for this test statistic was proposed
by [22] with a pairwise approach between successive images
along the time series to detect change points.

The second change detection method used is based on
a GLRT test statistic extended to non-Gaussian distribu-
tions on PolSAR images, proposed by [20], using texture

τ
(t)
k ∈ R+ within the data, with x

(t)
k ∼ z

(t)
k

√
τ
(t)
k and

z
(t)
k ∼ CN (0p,Σt). This method is referred to as NG-GLRT

in this paper. Its associated test statistic Λ̂NG is shown in eq.
(7):

Λ̂NG =

∣∣∣Σ̂NG
0

∣∣∣TN

T∏
t=1

∣∣∣Σ̂TE
t

∣∣∣N
N∏

k=1

(
T∑

t=1
q
(
Σ̂

NG
0 ,x

(t)
k

))Tp

TTp
T∏

t=1

(
q
(
Σ̂

TE
0 ,x

(t)
k

))p (7)

where q(Σ,x) = xHΣ−1x, Σ̂
NG
0 =

p

N

N∑
k=1

T∑
t=1

x
(t)
k x

(t)
k

H

T∑
t=1

q
(
Σ̂

NG
0 , x

(t)
k

) ,
∀t ∈ [[1, T ]], Σ̂

TE
t =

p

N

N∑
k=1

x
(t)
k x

(t)
k

H

q
(
Σ̂

TE
t ,x

(t)
k

) .
Compared to the previous change detection method, its test

statistic involves the texture using a fixed-point estimator Σ̂
TE
t

(the Tyler Estimator), which is computationally intensive. Both
the G-GLRT and NG-GLRT methods were applied using three
window sizes (5, 7 and 21 pixels) to calculate covariance
matrices within the images. Using these values allows one
to understand the effect of this key parameter on the energy
consumption of the methods.

Finally, a simple direct approach used to estimate changing
pixels is the log difference—the difference in the log value
of the interband mean for each pixel between two images

(a) Composite RGB SAR image
at t = 0.

(b) Change detection ground
truth.

Fig. 2: Change detection data from the UAVSAR (Courtesy
NASA/JPL-Caltech) database [20], [21].

with no window size here. By definition, this method applies
only to image pairs. The statistic used is then named Λ̂LD and
presented in eq. (8). This method is cited as LogDiff in this
paper.

Λ̂LD =
1

p

(∑
bands

lnx(t1) −
∑
bands

lnx(t0)

)
. (8)

The performance of these three change detection methods
was evaluated using the Area Under the Curve (AUC) based
on the test statistics previously explained. The application of
these change detection and clustering methods produced a set
of performance and energy consumption data, which were
collected following the experiment setup presented in the next
subsection.

B. Experiment setup

The experiments were conducted using implementations that
relied exclusively on CPU. Thus, the implementations used an
Intel i5-12600 3.30GHz CPU, a 2 × 32 Go RAM, and a Smart
Switch 7 Aeotec® with a USB Z-Stick 7 Aeotec® controller.
The code for all experiments is available on GitHub2.

For statistical significance of the energy consumption mea-
sure, each run is repeated 30 times. For each run, the energy
consumption data, along with the method’s performance and
its parameters, are stored. The results obtained are then ana-
lyzed in the next subsection.

C. Results obtained

During the running time of each method, their performance
and energy consumption were measured, and each frugality
score was calculated for comparison.

1) Clustering: The measurements for the clustering task
show significantly different energy consumption depending on
the clustering method, as presented in TABLE I. The K-Means
and K-Means++ methods present better performance results,
with K-Means++ showing lower energy consumption.

Overall, the three frugality scores presented in Fig.3 agree
with the ranking of the methods based on their frugality,
the methods K-Means, K-Means++, GMM and Ward having
higher scores than the other methods. Indeed, the DBSCAN,
HDBSCAN, OPTICS and Agglomerative Clustering methods

2https://github.com/MattVerlynde/frugal-score-2025.git
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Fig. 3: Mean frugality scores on the clustering task.
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Fig. 4: Mean frugality scores on the change detection task.

TABLE I: Energy consumption of clustering methods (average
and 95%-confidence interval).

Method Energy consumption (J) ARI
Agglomerative Clustering 2.22± 0.456 0

Ward 0.208± 0.149 0.103
DBSCAN 0.655± 0.034 0.656

HDBSCAN 0.400± 0.164 0.0987
OPTICS 17.9± 3.078 0.113

GMM 0.669± 0.236 0.588
K-Means 0.516± 0.105 0.664

K-Means++ 0.083 ± 0.015 0.663

show poorer clustering performance according to their mea-
sured ARI. OPTICS in particular stands out as the least frugal
method for these data as its energy consumption is signifi-
cantly higher than the other methods, as shown in TABLE I.
It also appears that sWS and sHM exhibit different behaviours
for the Agglomerative Clustering method depending on how
much energy consumption is factored into the score. For
sWS , even though its performance is low, this method still
shows lower energy consumption than OPTICS, which results
in a higher frugality score. However, for sHM , performance
remains a constant factor, and its information is kept for any
κ. This can be interpreted as a lack of relevance in labelling
a method as frugal when it delivers the worst performance
possible (in this case, 0 for the normalized ARI).

2) Change detection: Again, on the change detection task,
all three frugality scores are consistent with the ranking of the
change detection methods, identifying the G-GLRT method
as the most frugal method, as shown in Fig.4. The NG-GLRT
method also shows performance equivalent to G-GLRT, while
on average, the LogDiff yields poor change detection results
on the data, with AUC values around 0.6. It also appears that

TABLE II: Energy consumption of change detection methods
(average and 95%-confidence interval). For G-GLRTx and
NG-GLRTx, x correspond to a window size of x pixels.

Method Energy consumption (J) AUC
G-GLRT5 1630± 59.1 0.825
G-GLRT7 1630± 57.2 0.853

G-GLRT21 2030± 57.2 0.923
NG-GLRT5 1.16× 104 ± 3490 0.846
NG-GLRT7 1.36× 104 ± 2040 0.882

NG-GLRT21 1.67× 105 ± 3030 0.944
LogDiff 8.32 ± 4.06 × 10−2 0.600

the window size used for the G-GLRT and the NG-GLRT
methods significantly affects their energy consumption.
Smaller window sizes induce higher performance for the
G-GLRT method, while the opposite effect is observed for
NG-GLRT. As energy is taken into account in the calculation
of both sWS and sHM , these scores decrease only for the
NG-GLRT21 method. This effect is due to the normalization
step of αn and βn in the calculation of both scores. However,
we observe a difference in their evolution trends along ϵ and
κ. sWS shows a linear evolution along ϵ, while sHM is a
rational function of κ. Its variations show a more complex
impact of the energy consumption on the score. For instance,
the evolution of sWS for NG-GLRT21 indicates that its
energy consumption is significantly higher than that of the
other methods. The evolution of its sHM shows a steep
slope for κ ∈ [0, 0.5] creating a clearer separation between
methods. Thus, for a given κ, sHM tends to discriminate
methods more effectively than sWS . However, both scores
rely on normalized measurements, which is highly dependent
on the specific experiments conducted. sF allows for a
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straightforward comparison as it directly uses the energy
consumption measure. As shown in Fig.4, this score does not
discriminate the frugality of the change detection methods as
effectively as sWS and sHM , nor as it does when applied to
the clustering task. This effect is due to the high absolute
energy consumption of these methods, as shown in TABLE
II. Therefore, this score is not well-suited for cases with
particularly high energy consumption.

For both tasks, the three scoring methods highlighted
different aspects of the frugality measure. sWS appeared less
informative than the other two, but its simplicity makes it an
easy-to-read scoring method, while sHM and sF , respectively,
identify with greater precision the least and the most frugal
methods. However, sF shows poor relevance for methods
with especially high energy consumption. Using these scores
together, as it is often done to assess performance in machine
learning, is relevant to study the frugality of remote sensing
data processing methods.

V. CONCLUSIONS

This study highlighted the difficulty of identifying the
frugality aspect of a data processing method in remote sensing.
A method was proposed to collect energy consumption data
and to combine them with the performance of data processing
methods through the use of three frugality scoring approaches.
These three representations provided different types of in-
formation in the study of the frugality of a method when
used for remote sensing applications. sWS is a straightforward
and easy-to-interpret approach, but sHM discriminates more
efficiently methods based on their energy consumption while
ensuring that the method does not have the worst possible
performance. sF is sensitive to high-energy-consumption mea-
surements, but can identify the most frugal methods more
efficiently than the other two scores, and it is scalable to further
experiments without pretreatment of the energy consumption
measurements. Using multiple scoring methods to assess the
frugality of data processing methods thus appears to be the
most relevant approach to encompass the different aspects
of frugality in remote sensing. In future work, other scoring
methods based on fuzzy logic approaches will be studied,
and applications to highly energy-consuming machine learning
methods such as deep learning models will be addressed.
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