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Abstract—This paper presents a study on early fault 
detection for industrial rotating machinery and robots. Time-
series vibration data collected from durability tests on three 
drive modules used in industrial robots were employed to 
compare and analyze the fault detection performance of 
supervised classification models and semi-supervised anomaly 
detection (AD) models. The classification models exhibited 
significantly degraded performance across all three datasets due 
to variations in the fault characteristics and the insufficiently 
distinct differences between normal and faulty conditions within 
each dataset. In contrast, the AD models—which incorporated 
weighting techniques based on time progression and the 
continuity of anomalies—effectively detected anomalies in the 
cycles immediately preceding faults across all datasets. Notably, 
the Transformer-based and Diffusion-based AD models 
demonstrated their capability for early fault detection by 
registering high anomaly scores in the pre-fault cycles. 

Keywords—rotating machine, vibration data, fault detection, 
classification, anomaly detection 

I. INTRODUCTION 

Recent advancements in manufacturing have rapidly 
accelerated the adoption of high-level automation and smart 
factory systems. In this process, industrial rotating machinery 
and robots are gradually being applied throughout production 
processes, enabling efficient and reliable production by 
handling heavy loads and performing precision assembly 
tasks. Moreover, these devices are capable of operating 
continuously 24 hours a day while maintaining consistent 
quality and speed, thereby establishing themselves as essential 
means for securing a competitive advantage [1], [2]. 

However, rotating machinery and robots consist of 
intricately interconnected mechanical components, and their 
operating conditions or load states can accelerate component 
degradation and wear. In such cases, unexpected component 
failures or malfunctions can lead to a complete halt of the 
production line or result in significant economic losses and 

safety hazards [3]. In particular, if driving modules—
comprising elements such as gearboxes, motors, bearings, and 
brakes—fail, the machinery's performance can deteriorate 
dramatically, rendering early diagnosis and preventive 
maintenance indispensable [4], [5]. 

In the past, fault detection methods have primarily relied 
on extracting traditional features from sensor data. In 
particular, techniques such as analyzing signal characteristics 
in the frequency domain using the Fourier Transform (FFT) 
or extracting features indicative of abnormal patterns in the 
time-frequency domain via wavelet transform have been 
widely employed. Although these methods work effectively 
when the spectral characteristics of normal and fault 
conditions are clearly distinct, they encounter limitations in 
real industrial environments where operating conditions are 
complex and fault modes vary. Under such circumstances, it 
becomes challenging to predefine appropriate frequency 
bands and transformation parameters [6], [7].  

To overcome these limitations, fault diagnosis techniques 
that utilize machine learning and artificial intelligence (AI) 
have recently attracted considerable attention in industrial 
settings. In these approaches, sensor data—such as vibration, 
torque, current, and temperature—collected in real time from 
rotating machinery or robots are analyzed to identify early 
signs of faults. Among these sensors, vibration sensors are 
particularly effective at capturing subtle changes and play a 
crucial role in predicting the degradation or wear of driving 
modules. Supervised classification models have proven 
effective when ample data from both normal and fault 
conditions are available, and they have been widely employed 
in previous research [8], [9]. 

However, in industrial settings, it is challenging to train 
supervised models because fault data is scarce or fault types 
are highly diverse. To overcome this limitation, semi-
supervised approaches—which train models solely on normal 
data and subsequently detect anomalies as deviations from the 
normal range—have gained significant attention [10], [11]. In 
particular, anomaly detection (AD) models such as Long 
Short-Term Memory (LSTM), Variational Autoencoder 
(VAE), Diffusion, and Transformer are trained exclusively on 
normal data to internalize normal patterns. When new data is 
introduced, these models compute reconstruction errors or 
differences in the distribution of feature vectors, and larger 
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errors or differences indicate that the data deviates from the 
normal range, thereby enabling fault detection [12], [13], [14]. 

This paper compares the fault detection performance of a 
supervised classification model and a semi-supervised AD 
model using vibration data collected from durability tests on 
driving modules employed in industrial rotating machinery 
and robots. First, the ability of the classification model to 
distinguish between normal and fault data is evaluated. Then, 
under the assumption of limited fault data, a semi-supervised 
AD approach is applied to demonstrate through experiments 
that effective fault detection is achievable even when the fault 
types are ambiguous or the available data is insufficient. 

The remainder of the paper is organized as follows.  In 
Section 2, the durability test environment for driving modules 
and the methods for acquiring vibration data are described. 
Section 3 analyzes the features of the acquired data using 
statistical techniques. In Section 4, the vibration data is 
applied to both a classification model and a semi-supervised 
model for fault detection, and the experimental results are 
compared and analyzed. Finally, Section 5 presents the 
conclusions and future research directions. 

II. DATASET OF DRIVING MODULES 

In this study, a durability test environment for driving 
modules was constructed, as shown in Figure 1, and data were 
acquired from it. The driving module used in the tests was the 
Kaiser` KAH-25E L5BE model—a commercial product for 
collaborative robots—with a rated power of 500 W, a 
maximum average torque of 133 Nm, and a rated speed of 16.2 
RPM. The vibration sensor employed was the PCB 356A17, 
a 3-axis accelerometer with a sensitivity of 500 mV/g, a 
measurement range of ±98 m/s² (peak), and a frequency range 
of 0.4–4000 Hz. 

 
Fig. 1. Durability test environment for driving modules. 

The durability test of the driving module was conducted 
under the conditions presented in Figure 2. A torque of 115 
Nm was applied to the module, which was then rotated 
continuously back and forth between 0° and 360°. Each cycle 
lasted 20 seconds, with an acceleration/deceleration phase of 
0.5 seconds (at 24 RPM), a constant-speed phase of 4.5 
seconds (at 12 RPM), and a stopping phase of 1 second. The 
top graph in Figure 2 shows the applied torque, the middle 
graph displays the rotational speed, and the bottom graph 
illustrates the rotational position. 

 
Fig. 2. Durability test conditions for driving module. 

In the durability test, data were collected for 20 seconds 
every 10 minutes at a sampling rate of 1 kHz. Additionally, to 
ensure data stability, only data from the constant-speed 
forward rotation phase were used. The data from each 10-
minute period were defined as one cycle and applied to the 
fault detection performance experiments. 

III. FEATURE ANALYSIS OF DATA 

Driving modules used in industrial environments can 
experience wear, degradation, and various anomalies due to 
prolonged operation or exposure to harsh conditions. In 
particular, the vibration signals from these driving modules 
provide a crucial indicator for the early detection of such 
abnormalities.  

Figure 3 shows the vibration data obtained from the 
durability tests. Under identical test conditions, three driving 
modules were tested: Module 1 failed after 882 cycles (147 
hours), Module 2 after 3,606 cycles (601 hours), and Module 
3 after 1,190 cycles (198.3 hours). 

 
Fig. 3. Vibration data collected from durability test. 

Module 1’s vibration signal undergoes a brief period of 
abrupt fluctuations in the mid-phase, but in the latter phase, it 
maintains a level similar to the initial phase without any 
further sharp increases or spikes. In Module 2, the vibration 
signal rapidly intensifies toward the end, with large spikes 
observed, and the RMS value also rises markedly just before 
the fault occurs. Meanwhile, Module 3 exhibits a short spike 
in the early phase, remains relatively stable until the mid-
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phase, and then experiences a rapid increase in vibration in the 
latter phase, leading to a substantial rise in the RMS value. 

In this paper, various features of the vibration signals 
generated by each module are analyzed to confirm the changes 
between normal and pre-fault conditions. To achieve this, both 
traditional frequency analysis methods—namely, FFT (or 
PSD) analysis—and the Discrete Wavelet Transform (DWT), 
which allows for simultaneous time-frequency analysis, were 
employed to analyze how the frequency bands of each module 
vary.  

Figure 4 presents a comparison of the power spectral 
density (PSD) obtained via frequency transformation for the 
average signals in both the normal and pre-fault intervals 
(cycles 1–10, 101–110, 201–210, last 20–11, and last 10–1) 
for Modules 1, 2, and 3. The horizontal axis represents 
frequency (Hz) and the vertical axis shows PSD (dB/Hz), with 
the PSD curves for each interval overlaid.  

 

Fig. 4. Analysis of vibration data features using PSD. 

For module 1, the PSD is notably high in the low-
frequency region (around 60 Hz). However, when comparing 
normal and pre-fault intervals, there is no substantial overall 
difference. In the high-frequency range (around 440 Hz), 
normal cycles show slightly higher PSD values, but other 
frequency bands exhibit relatively stable distributions with no 
significant changes, indicating that there is no marked 
distinction between normal and pre-fault states. For module 2, 
both normal and pre-fault cycles present similar curves in the 
low-frequency range (0–100 Hz), maintaining a stable pattern 
without distinct spikes. Although cycles 201–210 display 
comparatively higher PSD values in the mid-frequency range 
(around 200 Hz), the overall fluctuation from low to high 
frequencies remains minimal. However, in the high-frequency 
range (around 400 Hz), a relatively large difference appears 
between normal and pre-fault cycles, suggesting that vibration 
energy increases in certain sections. For module 3, the PSD in 
the pre-fault cycles is significantly higher than that in the 
normal cycles across the entire frequency range, and some 
segments also exhibit substantially larger fluctuations. This 
implies that, in the pre-fault interval, vibration energy broadly 
rises from low to high frequencies. Compared to the other 
modules, module 3 shows a more pronounced change during 
the pre-fault stage. 

Figure 5 presents the results of applying the Discrete 
Wavelet Transform (DWT) to the average signals of both 
normal and pre-fault cycles for each module. The horizontal 
axis indicates the sample index, and the vertical axis 
represents the wavelet coefficient value. Levels 1 and 2 
primarily capture lower-frequency or larger-scale information, 
while Levels 3 and 4 mainly reflect mid- to high-frequency 
information.  

 
Fig. 5.  Analysis of vibration data features using DWT. 

For Module 1, the Level 1 and 2 coefficients (blue and 
orange) remain relatively stable within a narrow range across 
the entire interval, and the Level 3 and 4 coefficients (green 
and red) also exhibit relatively consistent behavior without 
large amplitude fluctuations. Similarly, for Module 2, neither 
the normal nor the fault cycles show any noticeable amplitude 
spikes or fluctuations in the Level 1–4 coefficients, 
maintaining a generally stable pattern in both the low-
frequency and mid-/high-frequency ranges. In contrast, for 
Module 3, the amplitude range of the Level 2 and 3 
coefficients becomes somewhat wider in the pre-fault cycles 
compared to the other two modules, and greater variation is 
observed in the mid-/high-frequency bands. 

IV. EXPERIMENTS AND RESULTS FOR FAULT DETECTION 

A. Fault Detection using Classification Model 

Supervised classification models have been widely 
applied not only to image-based tasks but also to fault 
detection in industrial settings where ample normal and fault 
data are available. A fault detection experiment was conducted 
using classification models: for each module, the first 100 
cycles of normal operation and the 100 cycles immediately 
preceding failure were used for training. Training inputs 
comprised raw time-series signals, FFT-based power spectral 
density data, and DWT-transformed features. Fault detection 
was performed with an Artificial Neural Network (ANN) and 
a one-dimensional Convolutional Neural Network (1D-CNN), 
and their performances were compared and analyzed. 

The ANN model consumes one-dimensional feature 
vectors and passes them through four fully-connected layers 
of 512 → 256 → 128 → 64 units (each with ReLU and 50% 
dropout), ending in a single-unit output layer that yields the 
raw logit. Training uses the AdamW optimizer (lr = 0.001, 
weight decay = 0.0001). The 1D-CNN model takes raw 1,000-
sample segments as (batch, 1, 1000) inputs, applies two 
Conv1d + MaxPool1d blocks (1→64, then 64→128 channels; 
kernel sizes 5→2), flattens the result, and feeds it through a 
256-unit dense layer (ReLU + 50% dropout). A final sigmoid-
activated neuron produces the fault probability. Training uses 
BCELoss with AdamW (lr = 0.001, weight decay = 0.0001). 

Table 1 presents the fault detection results on vibration 
data using the classification model. Out of the three modules, 
two modules were used as training data while the remaining 
one was used as test data. 

First, when modules 2 and 3 were used for training and 
module 1 was held out for testing, overall accuracy remained 
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around 50%. This low performance likely stems from an 
unclear separation between normal and fault patterns in 
module 1, which prevented the model—trained only on 
modules 2 and 3—from reliably detecting faults. Next, with 
modules 1 and 3 for training and module 2 for testing, 
accuracy improved slightly but remained unsatisfactory. 
Although module 2’s data show some distinguishing features, 
their distribution does not fully match that of modules 1 and 3, 
leading to degradation in certain models. 

Finally, training on modules 1 and 2 and testing on module 
3 yielded much better results: FFT-ANN and 1D-CNN 
achieved high accuracy and F1 scores, while Raw-ANN and 
DWT-ANN lagged behind. This indicates that module 3’s 
data offer a clearer normal-vs-fault separation, which the 
former models captured more effectively. In summary, 1D-
CNN delivered the best overall performance, followed by the 
FFT-based ANN, with Raw-ANN and DWT-ANN showing 
relatively lower accuracy.  

TABLE I.  FAULT DETECTION RESULTS USING CLASSIFICATION 

Dataset 
Metric 

Fault Detection Performance using 
Classification Model 

Train Test 
Raw-
ANN 

FFT-
ANN 

DWT-
ANN 

1D-
CNN 

2, 3 1 
Accuracy 0.5546 0.5042 0.5156 0.5128 

F1-Score 0.2957 0.0327 0.1047 0.0580 

1, 3 2 
Accuracy 0.5370 0.5839 0.5750 0.6578 

F1-Score 0.5690 0.6658 0.4669 0.7213 

1, 2 3 
Accuracy 0.5333 0.8544 0.5972 0.8344 

F1-Score 0.5492 0.8729 0.6253 0.8551 

 

The experimental results demonstrated that classification 
models are not effective for fault detection in driving modules 
with diverse characteristics. It was observed that for a 
classification model to achieve high performance, not only is 
sufficient training data required, but the features 
distinguishing normal and fault conditions must also be 
clearly defined. 

B. Fault Detection using Anomaly Detection Model 

In real industrial environments, the operating conditions 
and work processes are highly variable, which leads to 
complex fault types and data characteristics. This complexity 
imposes limitations on fault detection methods based on 
classification models, as they require clearly defined labels 
and sufficient data. To address these challenges, this paper 
proposes a fault detection approach based on semi-supervised 
AD models. 

This paper employs representative AD models—LSTM, 
VAE, Transformer, and Diffusion—for fault detection. For 
performance comparison, data from two out of three modules 
were used for training, while the remaining module’s data was 
used for testing. In addition, only the first 100 cycles of data 
from each module were used for training the AD models, and 
fault detection was performed on all cycles of the test data. 

In this study, to effectively detect pre-fault anomalies in 
time-series vibration data, weights based on time progression 
and anomaly continuity were applied. The time progression 
weight 𝜔௧(𝑖)  was computed using Equation (1) to assign 
increasing weight as the probability of failure rises over time. 

 𝜔௧(𝑖) = 𝑒𝑥𝑝 ൬
௜

ேିଵ
𝑙𝑛(𝛼)൰ , 𝑖 = 0,1, … , 𝑁 − 1  

Here, 𝑖  represents the current cycle, 𝑁  denotes the total 
number of cycles, and 𝛼  is the rate at which the weight 
increases over time.  

Additionally, since consecutive anomaly detections are 
considered to be more indicative of impending faults than 
isolated anomalies, a continuity weight 𝜔௖(𝑖)  is applied as 
shown in Equation (2). 

 𝜔௖(𝑖) = ൜
1

𝛽 ∙ 𝜔௖(𝑎௜ିଵ)
𝑖𝑓 𝑖 = 1 𝑜𝑟 𝑎௜ − 𝑎௜ିଵ > 𝛿

𝑖𝑓 𝑎௜ − 𝑎௜ିଵ ≤ 𝛿
 

Here, 𝑎௜ denotes the index of the cycle where an anomaly 
occurs, 𝛿  represents the number of cycles used to assess 
continuity, and 𝛽 is the rate of weight increase for consecutive 
anomalies. 

For each cycle 𝑖, the reconstruction error 𝑒(𝑖) is computed, 
and by calculating and multiplying the time progression 
weight and the continuous anomaly weight, the final weighted 
error 𝐸ఠ(𝑖) is derived as shown in Equation (3). 

 𝐸ఠ(𝑖) = 𝑒(𝑖) × 𝜔𝑡(𝑖) × 𝜔𝑐(𝑖) 

The final 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒𝑟(𝑖)  was obtained as shown in 
Equation (4) by normalizing the final weighted error 𝐸ఠ(𝑖) by 
dividing it by the maximum value of 𝐸ఠ(𝑗), yielding a score 
in the range [0,1]. 

 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑆𝑐𝑜𝑟𝑒(𝑖) =
𝐸𝜔(𝑖)

௠௔௫{𝐸𝜔(𝑗)}
, 𝑗 = 0,1, … , 𝑁 − 1 

Figure 6 shows the results of visualizing the anomalies 
detected and their corresponding anomaly scores by applying 
an AD-based fault detection model to the vibration data of 
each module.  

 

Fig. 6. Fault Detection Results Using an AD Model. 

For Module 1, the features of the vibration signals in the 
normal and fault states were not clearly distinguishable, and 
significant vibration fluctuations occurred in the mid-cycle. 
As a result, although all AD models detected relatively high 
anomalies during the mid and later cycles, the pre-fault cycles 
exhibited the highest anomaly scores, thereby enabling 
effective fault detection. For module 2, although significant 
fluctuations in the vibration data were observed in the early 
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cycles, leading to somewhat elevated anomaly detections in 
the AD models, high anomaly scores were recorded in the later 
and pre-fault cycles, effectively enabling fault detection. 
Lastly, Module 3 exhibited a clear difference in vibration 
amplitude between the normal and fault states, with all AD 
models assigning high anomaly scores in the pre-fault 
segment, thereby achieving effective fault detection. Overall, 
the performance comparison among the models confirmed 
that the Diffusion and Transformer models were the most 
effective at detecting anomalies immediately preceding faults. 

Table 2 shows the fault detection performance of the AD 
models for each dataset. For each dataset, the data were 
segmented into the last 200, 100, 50, and 10 cycles prior to 
fault, and an anomaly score was calculated for each cycle to 
compare how effectively pre-fault anomalies are detected. 

TABLE II.  ANOMALY SCORES OF AD MODELS BY DATASET 

Dataset 
Model 

Fault Detection Performance 
(Anomaly Score) 

Train Test 200 cycle 100 cycle 50 cycle 10 cycle 

2, 3 1 

LSTM 0.2262 0.2273 0.1667 0.5000 
VAE 0.2778 0.3636 0.5278 0.5000 
Diff. 0.2778 0.3939 0.5556 0.5833 

Transf. 0.3000 0.4333 0.5333 0.3333 

1, 3 2 

LSTM 0.4952 0.8455 0.9333 0.8000 
VAE 0.4857 0.8455 0.9333 0.8000 
Diff. 0.4905 0.8545 0.9333 0.8000 

Transf. 0.5250 0.9200 0.9200 0.6000 

1, 2  3 

LSTM 0.3000 0.5300 0.7000 1.0000 
VAE 0.3000 0.5300 0.7200 1.0000 
Diff. 0.3000 0.5300 0.7200 1.0000 

Transf. 0.3000 0.5100 0.6000 1.0000 
 

When module 1 was used as the test dataset, the overall 
anomaly scores were somewhat lower than for the other 
modules. However, in the final 100 cycles before the fault, the 
highest scores appeared in the order of Transformer, Diffusion, 
VAE, LSTM; and in the final 50-cycle segment, the order was 
Diffusion, Transformer, VAE, LSTM—enabling effective 
fault detection. The slightly lower scores in the last 10 cycles 
are presumed to result from the module continuing to operate 
for a period even after the fault occurred, so those particular 
scores may be disregarded. In module 2, from the final 100 
cycles onward, all models produced high anomaly scores 
above 0.84, with the Transformer model exhibiting especially 
prominent performance. At the final 50-cycle mark, every 
model again recorded anomaly scores exceeding 0.92, thereby 
demonstrating stable fault detection. For module 3, the 
Transformer model generally exhibited slightly lower 
anomaly scores compared to the other models; however, 
starting from the final 50 cycles, its scores exceeded 0.6, and 
during the last 10 cycles, the score reached a maximum of 1, 
thereby demonstrating highly effective fault detection. 
Overall, the Transformer model detected faults earlier than the 
others by registering high anomaly scores at earlier cycles, 
while the Diffusion model also reliably identified faults across 
all datasets, supported by its consistently high anomaly scores. 

V. CONCLUSION AND FUTURE WORK 

This paper presents a study on early fault detection in 
industrial rotating machinery and robots. Based on time-series 
vibration data collected from durability tests on drive modules, 
the fault detection performance of a supervised classification 
model and a semi-supervised anomaly detection (AD) model 
was compared and analyzed. Experimental results revealed 

that when the fault data features are not distinctly 
differentiated or pronounced across all three datasets, the 
supervised classification model fails to achieve satisfactory 
performance, thereby limiting its applicability in real 
industrial environments. In contrast, the AD model, which is 
trained solely on normal data and incorporates weighting 
techniques based on time progression and the continuity of 
anomalies, effectively detects pre-fault anomalies. Notably, 
among the AD models, the Transformer and Diffusion models 
exhibited outstanding performance in fault detection. 

In future research, additional datasets from various 
operating environments and drive conditions will be collected 
to further validate the performance of the AD models in depth. 
In addition, the study aims to enhance the models’ 
performance and reliability to contribute to reducing 
maintenance costs and ensuring safety in industrial settings. 
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