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Abstract—Due to the omnipresence of radio frequency signals,
the Channel State Information (CSI) can offer an alternate
source to image, video, and other high-dimensional streams in
a great many Internet-of-Things (IoT) applications. As a result,
an ever increasing number of researchers are advocating for the
use of passive CSI data for ranging, tracking, perception and
automation across many domains such as robotics, healthcare,
and surveillance. Specifically in indoor environments where
movements cause classifiable effects, the CSI can be leveraged
to provide a high-dimensional signal source for a broad set
of applications including activity, gesture, pose, location, and
orientation recognition. This task however remains a challenge
on two accounts. On the one hand, the radio frequency channel is
highly susceptible to environment changes and artifacts. On the
other hand, there is a lack of robust models that cover the full
range of applications for practical deployment. In this work, we
focus on tackling these issues by proposing a novel cross-dual-
path-attention architecture that is robust against environment
variations and achieves high accuracy across multiple tasks in
practical settings. Our experiments on multiple datasets verify
that the proposed architecture consistently outperforms the state-
of-the-art methods when tested for concurrent application.

Index Terms—Cross-dual path attention, channel state infor-
mation, activity recognition, pose estimation, gesture recognition,
finger printing.

I. INTRODUCTION

Radio frequency signals have enabled innovative solutions
across various indoor IoT applications by leveraging their
ability to capture environment-dependent information. This
non-intrusive approach is increasingly used for applications
such as location, gesture, pose, and human activity recognition
in domains such as healthcare, robotics, and surveillance.
There are several approaches to radio frequency-based recog-
nition, including device-based and device-free. In device-based
approaches, input radio signals are collected directly from
sensors attached onto subjects. Equipping subjects with digital
sensors is inherently cumbersome, and in residential and most
commercial applications impractical. Alternatively, passive
sensing from radio frequency signals tranceived between edge-
devices in indoor settings is remarkably non-intrusive (i.e. no
wearables) and of high resolution [1].

Considering the advantages of device-free solutions, re-
cently the channel state information (CSI) from network
interface cards has gained a lot of attention [2]. WiFi en-
abled devices readily exist in many indoor environments (e.g.
laptops, tablets, etc) at no additional cost. In essence, for
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passive sensing then all that is required is a wireless channel
(for example at 2.4GHz or 5Ghz in the 802.11ax standard)
established between various WiFi enabled devices. Because
the movement of human subjects in relation to objects changes
the multipath characteristics of the channel, CSI will have
a different amplitude/phase at any given time. As opposed
to received signal strength (RSS) which provides coarse in-
formation (MAC layer), the CSI carries fine-grained infor-
mation (PHY layer) measured through orthogonal frequency
division multiplexing (OFDM) on multiple sub-carriers [3].
Other sources such as ultra-wide band also exist often at
an additional per device cost [4]. The CSI which contains
sufficient features, is nevertheless accessible, economical, and
therefore highly lucrative as a high dimensional resource.

Building fully ubiquitous passive recognition systems from
a technological standpoint remains a challenge due to the
fact that small changes in environment setting greatly im-
pact the received patterns. The predominant factors here are:
1) equipment setting (e.g. distance and antennas/sub-carrier
specifications); 2) environment artefacts (e.g. furniture layout);
3) location of devices and subjects; 4) pose/orientation of
subjects with respect to transceivers. These effects can vary
within a given environment, for instance when furniture are
rearranged. As a result, a recognition model that is trained for
a specific setting may not work well in another one. Device-
based approaches can straight forwardly filter such effects out
as background noise inside the sensory hardware. In passive
sensing however, there is no apparent solution in practical
settings and for multiple concurrent applications.

In this work, we propose a novel architecture that addresses
the above challenges related to environment and task variabil-
ity through feature learning from CSI input frames using a
cross-dual path attention (CDPA) mechanism. In particular, the
CSI inputs are fed through a Spatial Transformation (ST) block
in parallel with a Temporal Transformation (TT) block with
learnable parameters to extract application dependent features.
The CDPA subsequently fuses the respective transformations
into a common embedded representation for concurrent pre-
diction in multi application settings. We introduce the CDPA
model along with ST and TT components in Section II. We
train and test the model on a variety of applications related to
activity, gesture, pose, orientation, and location, including 10
different datasets. The performance of the proposed method
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in each case is evaluated and compared to the state-of-the-art
approaches which we report in Section III. To the best of our
knowledge, this is the first design of its kind to cover a diverse
range of indoor applications.

II. PROPOSED METHOD

In this section, we provide an in depth explanation of the
proposed CSI-based architecture for multiple applications. The
components of the system are as follows. The input data
are first transformed into a spatial representation to capture
subtleties related to fine motions (e.g. swipe, etc), as explained
in Section II-B. The spatial representation is obtained through
a Convolution Neural Network (CNN). A temporal represen-
tation of the input is also obtained through a Transformer
architecture to further capture the inter-subcarrier corelations,
as explained in Section II-C. The output representations are
fused through a cross-attention block, termed Cross-Dual-
Path-Attention (CDPA), as explained in Section II-D, in order
to determine interactions across representations using attention
mapping. These components are fully and end-to-end trainable
given labeled data.

A. Model Inputs

Given a pair of receiver and transmitter WiFi antennas,
each with N,, and N, antennas and K sub-carriers, the
channel information are collected at a given time as input
data. The vector of channel state information is constructed
as h = [h1, -+ ,hx] € CE. Consider N (discrete) channel
measurements, the collected CSI in compact matrix form can
be constructed by H = [hy,--- ,hy] € CEXN, where N is
the sequence length corresponding to the time index and K
the total number of sub-carriers over a multi-antenna, multi-
channel communication link (the number of antennas times
the number of sub-carriers). The CSI tensor H consisting
of the raw magnitude/phases forms the input to our system.
We employ two different neural network architectures to
extract features from the raw input representations. First, we
employ a CNN architecture which takes the raw input to
extract rich features across the spatial dimension. Next we
employ a Transformer architecture which is equipped with
a self-attention mechanism ideal for capturing time index
dependencies. The input transformations are elaborated in the
following subsection.

B. Spatial Transformation

In the spatial transformation modality (ST), the represen-
tations of the raw CSI data are fed into a CNN in order
to extract time and frequency related features. The tensor
of raw data, i.e. H, is transformed through the CNN blocks
followed by a single layer perceptron (SLP) to produce its final
spatial representations Hs. The relation between the matrix of
original raw and the transformed matrix of CSI through spatial
transformation S, denoted by fIs, is denoted by:

Hs = fs(H), (1)

where fs is the spatial transformation function, parameterized
by Ogs as shown in Spatial Transformation block in Figure 1.

C. Temporal Transformation

In the temporal transformation modality, we aim to capture
the long term temporal dependencies in the input represen-
tations. Let 7 be the self-attention map/matrix, where the
higher the value of j’th element in the ¢’th column, the higher
the corelation between the j’th and ¢’th sub-carriers at a
given time. Given the input representation H, the attention
map/matrix is given by 7 = softmax(W7 o H), where W7
are learnable parameters. The new representation is thereby
obtained by H”'T, followed by an addition and normalization
operation, and a dense layer (SLP for dimension matching).
We also apply a mask in the self-attention map so that W7
is lower triangular, to ensure forward-in-time causality. The
relation between the matrix of original raw CSI representations
and the transformed matrix of CSI through attention map 7T,
denoted by ﬂT, becomes:

Hr = fr(H), )

where f7 is the temporal transformation function, parameter-
ized by ©7 as shown in Temporal Transformation block in
Figure 1.

D. Feature Fusion

In the following, we introduce Cross-Dual-Path Attention
(CDPA) for achieving high accuracy and scalable classification
and feature learning across disparate target domains and appli-
cations. Since the spatial and temporal representations from the
previous stages are learned in completely separate parameter
spaces, naive combining of such representations could make
the learning task near impossible as each module tends to
update the gradient independently. The CDPA block is added
therefore to properly blend representations from temporal and
spatial transformation blocks. We show empirically in Section
IIT the importance of this effect and explain its implementation
details in the following.

Given two representations denoted by S and 7 as input,
the CDPA applies parameterized transformations as Q =
WSTHT, WSTHS, and V = WSTHS Formally, let
Vst = W57, WST ,WST] be a set of distinct parameters,
the normalized coefﬁments ¢; across K dimensions between
the two representations are computed by:

1 (KQ")i;

y— ) VZaJ € {17 e
VN Y5 (KQT)y;

using which the transformed input vectors are computed as
h = ¢,V The relation between input representations Hs and
HT through the CDPA operations, denoted by HST, becomes:

Hsr = f§’ (Hs,Hy), 4)

where fE7 is the cross-dual-path transformation function,
parameterized by .
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Fig. 1. The CDPA architecture for concurrent CSI-based applications, namely activity, gesture, pose, orientation, and location prediction. It consists of a
cross-dual path attention block, trained on CSI datasets across different environments and tasks concurrently using the loss function in Relation (6).

Given Hgyr € CK*K as a matrix of cross dual path

features, in a single application scenario the class prediction
task is performed as:

- exp(0THsr

ply = c[Hs7:0') = — < ,TA) :

Zj:l eXP(ej HsT)

where y is the model prediction among C' classes, 6. denotes

the weight corresponding to the feature set of class ¢ in the
model, and ©’ = [#],--- , 0] in compact notation.

®)

E. Multi-Application Recognition

Thus far in the discussion, we have provided a complete
account of all the components needed in order to implement a
full architecture for a single application, such as activity recog-
nition, from raw input CSI to predictive labels. Ultimately, we
are interested in supporting multiple CSI-based applications
concurrently. In what follows the terms Application and Task
are used interchangeably. In multi-task learning, multiple tasks
are solved jointly, sharing inductive bias between them [5].

Consider a multi-task learning problem given a large dataset
of size N’ with input and per-task labels {H;,y!, -, 47N,
where T is the number of tasks and y! is the label of the
™ task for input H;. For the CDPA model f(H;Os, O, ®)
and given task-specific loss function £!(.,.), the empirical risk
minimization formulation can be written as follows:

min
CENCE

N T
o 2D CitL(f(H; 05,07, ®).35),  (©)

i=1 t=1

where coefficients c; ; weigh contributions from each input to
the ¢ loss component, with no contribution when ¢; ; = 0.
Optimizing the above function results in a single network shar-
ing parameters across multiple tasks, which can be performed
with GradNorm algorithm [6].

III. EXPERIMENTATION & RESULTS

In this section, we provide experimental results and evaluate
the performance of the proposed algorithm. We train a CDPA
model with the following components. We employ a ResNet18
stem for the ST block and a Vision Transformer stem for
the TT block with emb_dim 120 , depth = 1, and
num_heads = 1. The model is trained for 100 epoches, with
20% of data held out for test on an Apple M2 computer
using the loss function in Relation (6). In particular, we
focus on a set of experiments related to 7' = 10 combined
tasks with different CSI characteristics for activity, gesture,
pose, orientation, and location based on the following datasets.
Each dataset comprises varying equipment settings, subjects,
environment configurations, and task complexities.

1) Activity Recognition: the datasets used for the task of
activity recognition are:

o StanWiFi [16] with seven activities including “ lie
down”, “fall”, “walk”, “run”, “sit down”, “stand up”, and
“pick up”. These activities were performed twenty times
by 6 subjects. Each data frame is 500 (the number of
samples) by 90 (the number of subcarriers), by 90 (the
number of timestamps).

o Apartment [8] with 4 activities including “pickup”,
“sitdown”, “standup”, and “walk” performed by a single
subject, and a null class where no subject is present. Each
data frame is collected over 156 sub-carriers with the
dimensions as above.

« E-EYE [17] with five different activities, “falling”,
“standing”, “walking”, “sitting down” and “standing up”
from a chair, and “picking a pen” from the ground, each
repeated 20 times. In total, 3,000 samples were collected
corresponding to 30 subjects, 5 experiments per subject
performed for 20 times each.

e MultiE [4], including 6 different activities (“wiping”,

“walking” ,* rotating” , “sitting”, and “stand-

% <«

moving” ,
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TABLE I
PERFORMANCE ON CONCURRENT TASKS BY THE STATE-OF-THE-ART (SOTA) AND BY THE PROPOSED METHOD WITH - ST: SPATIAL TRANSFORMATION,
TT: TEMPORAL TRANSFORMATION, SLP: SINGLE-LAYER PERCEPTRON, CDPA: CROSS DUAL-PATH ATTENTION. METRICS REPORTED ARE ACCURACY
(ACC) IN PERCENTAGE, AS WELL AS PRECISION (P), RECALL (R), AND F1-SCORE (F1) BETWEEN O AND 1.

Dataset SOTA ST+SLP TT+SLP ST+TT+SLP ST+TT+CDPA

ACC P R F1 ACC P R F1 ACC P R F1 ACC P R F1 Acc
StanWiFi [7] 98 0.84 0.80 0.82 84 085 0.81 0.82 85 092 093 0.92 96 094 096 0.95 97
Apartment [8] 98 098 098 0.98 98 1.00 1.00 1.00 100 1.00  1.00 1.00 100 1 1 1 100
E-Eye [9] 94 077 074 0.74 71 0.83 081 0.77 83 0.89 090 0.89 90 093 093 093 94
MultiE [10] 71 048 046 045 48 0.89 0.88 0.88 89 0.87 0.87 0.87 87 090 090 090 90
NTU-Fi [11] 99 096 095 095 96 091 0.88 0.88 91 094 093 093 93 096 096 096 96
Widar [12] 92 095 095 095 95 045 027 0.20 45 098 097 097 97 096 096 096 96
SignFi [13] 98 099 099 0.99 99 099 099 0.99 99 099 099 0.99 99 1 1 1 100
mmWPose [14] 95 0.68 0.73  0.66 68 087 0.85 0.84 87 099 099 0.99 99 098 098 0.98 99
DirWiFi [15] 92 1.00 1.00 1.00 100 1.00  1.00 1.00 100 1.00  1.00 1.00 100 1 1 1 100
FP-Loc - 096 095 0.95 94 091 0.86 0.87 91 1 1 1 100 1 1 1 100
Average: 93 0.85 0.84 0.84 85 0.86 0.83 0.82 86 095 095 095 96 096 096 096 97

ing up”), performed by 6 different subjects across 100
different environment settings (e.g. furniture and location
variations).

2) Gesture Recognition: the datasets used for the task of

gesture recognition are:

e NTU-Fi [13], comprising classes “running”’, “walking”,
“falling”, “boxing”, “circling arms”, and ‘“cleaning” the
floor—performed by 20 volunteers repeated 20 times.
Each data frame spans a duration of 1 second of size
3 by 114 by 500.

o Widar [12] - CSI dataset designed for human gesture
recognition, participants performed 22 distinct gestures,
including drawing numbers from O to 9 in the horizontal
plane. The dataset includes an extensive collection of
43,000 samples, providing a robust foundation for study-
ing gesture recognition in diverse scenarios.

o SignFi [18] - designed for CSI-based sign language
gesture recognition focusing on 150 different gestures by
five participants in two environments. Each data frame
has dimensions of 3 x 30 x 200.

3) Pose Estimation: the datasets used for the task of pose
and orientation recognition are:

« mmWPose [14] - the dataset for CSI-based pose estima-
tion with three participants (two males and one female,
with varying body shapes and heights) performing a
set of eight poses: “Arms up”, “Left hand up”, “Right
lean”, “Right hand up”, “Left lean”, “Empty”, and “Arms
wide”. Each pose was held for 15 seconds, and each
participant performed 20 rounds of the pose set, yielding
approximately five minutes of data per pose.

« DirWiFi '- the dataset for CSI-based direction estimation
with five distinct hand gestures: “drawing a circle, “cross-
ing hands”, “clapping”, “raising hands”, and “lowering
hands”, corresponding to actions like starting, stopping,
switching context, increasing, and decreasing. Gestures
were performed in 24 directions sampled at 15° intervals,
with a natural deviation of approximately +5° in gesture

Uhttps://gitlab.com/yuxiqin/direction-independent

direction. Three volunteers performed the five gestures
40 times in each of the 24 directions.

4) Fingerprinting / Localization: the dataset used for the
task of localization based on CSI finger printing is:

e FP-Loc [19] - the datasets for CSI-based localization col-
lected in two distinct indoor environments: a laboratory
and a meeting room, to represent both Non-Line-of-Sight
(NLOS) and Line-of-Sight (LOS) scenarios, consisting of
317 locations spaced 50 cm apart and of 176 locations
spaced 60 cm apart, respectively.

For each dataset we report the accuracy for the task achieved
by the best state-of-the-art (SOTA) method. In addition to
the proposed CDPA model with a ResNet stem (ST) and
Transformer stem (TT) referred to as ST+TT+CDPA, we
evaluate each task using the ST stem only, the TT stem only,
and using a single-layer perceptron (SLP) in place of the
CDPA block (ST+TT+SLP). Along with the accuracy of the
predictions (ACC), we also report precision (P), recal (R), and
f1-score (F1) for the models.

Table I summarizes the above experimental results. For the
activity recognition tasks, the CDPA with ST and TT stems
(i.e. ST+TT+CDPA) achieves 97, 100, 94, and 90 percent ac-
curacies on StanWiFi, Apartment, E-Eye, and MultiE datasets
on par with or improving the state of the art results. Without
the CDPA where the output representations from ST and TT
are concatenated and passed through a SLP (i.e. ST+TT+SLP),
the performance degrades indicating the importance of cross-
dual path component. Using either ST or TT individually,
corresponding to a single ResNet18 or a single Vision Trans-
former, results in relatively lower performance specifically on
MultiE dataset due to varying environment configurations. The
addition of CDPA on the other hand proves robust to these
variations.

For the gesture recognition tasks, the full CDPA model
outperforms the state of the art methods in precision, recall,
and fl-scores consistently on NTU-Fi, Widar, and SignFi
datasets. Across pose and orientation tasks with accuracies
99% and 100%, improvements by 4 and 8 percent are achieved
on mmWPose and DirWiFi respectively. In terms of CSI-
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Fig. 2. Improvements in concurrent accuracy (mean and standard deviation)
through different model combinations, including Spatial Transformer (ST),
Temporal Transformation (TT), Single Layer Percept (SLP), and Cross-Dual
Path Attention (CDPA). The average state-of-the-art accuracy across all tasks
is at 93% shown by the dashed line.

based finger printing, the accuracy of ST+TT+CDPA is at
the highest. The accuracy of 96% by SS+TT+CDPA is lower
than the best reported accuracy of 99% for NTU-Fi, the only
task where the concurrent accuracy is not improved. Across
all tasks, the proposed model however outperforms the state-
of-the-art with 97% accuracy and 0.97 fl-score on average.
Figure 2 shows concurrent performance across all tasks as
compared to baseline average of 93% by the state of the art
methods.

IV. CONCLUSIONS

The presence of WiFi infrastructure in indoor environments
presents an opportunity for non-intrusive applications based on
the channel state information. In this work, we present a novel
architecture which leverages the spatial and temporal features
in the CSI for concurrent processing and performance across
tasks related to activity, gesture, pose, orientation and location
estimation in smart environments using passive devices. The
model utilizes a cross-dual path attention mechanism to fuse
features and is trained on a diverse set of CSI-based tasks
resulting in improved performance over the state of the art
methods. In particular, the model achieves 97% performance
accuracy when trained and tested on a set of 10 concurrent
CSlI-based tasks.
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